EPFL – Automne 2024	Pr. M. Picasso
Analyse III – PH	Exercices
Série 1	12 septembre 2024

Exercice 1.

On rappelle le théorème suivant (Théorème 1.2 du livre) :

Théorème 1.

Soit $\Omega \subset \mathbb{R}^n$ un ouvert.

- 1. Si $f \in C^2(\Omega)$, alors $\Delta f = \operatorname{div}(\operatorname{grad}(f))$.
- 2. Pour n = 3, si $f \in \mathcal{C}^2(\Omega)$ et $F \in (\mathcal{C}^2(\Omega))^3$, alors $\operatorname{rot}(\operatorname{grad}(f)) = 0$ et $\operatorname{div}(\operatorname{rot}(F)) = 0$.
- 3. Si $f, g \in C^1(\Omega)$, alors $\operatorname{grad}(fg) = f \operatorname{grad}(g) + g \operatorname{grad}(f)$.
- 4. Si $f \in C^1(\Omega)$ et $F \in (C^1(\Omega))^n$, alors $\operatorname{div}(fF) = f \operatorname{div}(F) + F \cdot \operatorname{grad}(f)$.
- 5. Pour n = 3, si $F \in (\mathcal{C}^2(\Omega))^3$, alors $\operatorname{rot}(\operatorname{rot}(F)) = -\Delta F + \operatorname{grad}(\operatorname{div}(F))$, où $\Delta F = (\Delta F_1, \Delta F_2, \Delta F_3)$.
- 6. Pour n = 3, si $f \in \mathcal{C}^1(\Omega)$ et $F \in (\mathcal{C}^1(\Omega))^3$, alors $\operatorname{rot}(fF) = f \operatorname{rot}(F) + \operatorname{grad}(f) \wedge F$.

Prouvez les points 3. à 6.

Exercice 2.

Soient $k, \rho c_p > 0, v : \mathbb{R}^3 \to \mathbb{R}^3 \in (\mathcal{C}^1(\mathbb{R}^3))^3$ donnés et soit $T : \mathbb{R}^3 \to \mathbb{R} \in \mathcal{C}^2(\mathbb{R}^3)$ qui satisfait l'équation de la chaleur

$$-\operatorname{div}(k\operatorname{grad}(T)) + \rho c_p\operatorname{div}(Tv) = 0. \tag{1}$$

Si $k = \rho c_p = 1$, lesquelles de ces affirmations sont-elles correctes?

- 1. Si v = 0, $T(x_1, x_2, x_3) = \alpha x_1 + \beta x_2 + \gamma x_3$ satisfait (1) pour tous $\alpha, \beta, \gamma \in \mathbb{R}$.
- 2. Si $v(x_1, x_2, x_3) = (0, 0, 1), T(x_1, x_2, x_3) = e^{x_3} + C$ satisfait (1) pour tout $C \in \mathbb{R}$.
- 3. Si $v(x_1, x_2, x_3) = (x_1, 0, 0), T(x_1, x_2, x_3) = e^{\frac{x_1^2}{2}} + C$ satisfait (1) pour tout $C \in \mathbb{R}$.

Exercice 3.

Soient $\rho, \mu > 0$, $g = (g_1, g_2, g_3) \in \mathbb{R}^3$ et $v : \mathbb{R}^3 \to \mathbb{R}^3 \in (\mathcal{C}^2(\mathbb{R}^3))^3$ qui satisfait les équations de Navier-Stokes incompressibles

$$\rho(v_1 \frac{\partial v_1}{\partial x_1} + v_2 \frac{\partial v_1}{\partial x_2} + v_3 \frac{\partial v_1}{\partial x_3}) - \mu \Delta v_1 + \frac{\partial p}{\partial x_1} = \rho g_1, \tag{2}$$

$$\rho(v_1 \frac{\partial v_2}{\partial x_1} + v_2 \frac{\partial v_2}{\partial x_2} + v_3 \frac{\partial v_2}{\partial x_3}) - \mu \Delta v_2 + \frac{\partial p}{\partial x_2} = \rho g_2, \tag{3}$$

$$\rho(v_1 \frac{\partial v_3}{\partial x_1} + v_2 \frac{\partial v_3}{\partial x_2} + v_3 \frac{\partial v_3}{\partial x_3}) - \mu \Delta v_3 + \frac{\partial p}{\partial x_3} = \rho g_3, \tag{4}$$

$$\frac{\partial v_1}{\partial x_1} + \frac{\partial v_2}{\partial x_2} + \frac{\partial v_3}{\partial x_3} = 0. {5}$$

Si $\mu = \rho = 1$ et g = 0, lesquelles de ces affirmations sont-elles correctes?

1.
$$v(x_1, x_2, x_3) = (\frac{x_2^2}{2}, 0, 0), p(x_1, x_2, x_3) = x_1 \text{ satisfont (2)-(5)}.$$

2.
$$v(x_1, x_2, x_3) = (\frac{x_1^2 + x_2^2}{4}, 0, 0), p(x_1, x_2, x_3) = x_1 \text{ satisfont (2)-(5)}.$$

Exercice 4.

Soient $\lambda, \mu > 0$ (coefficients de Lamé), $f : \mathbb{R}^3 \to \mathbb{R}^3 \in (\mathcal{C}(\mathbb{R}^3))^3$ (force) donnés et soit $u : \mathbb{R}^3 \to \mathbb{R}^3 \in (\mathcal{C}^2(\mathbb{R}^3))^3$ (déformation). Le tenseur des contraintes est la matrice symétrique $\sigma \in \mathbb{R}^{3\times 3}$ définie par $\sigma_{ij} = \mu(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}) + \lambda \operatorname{div}(u)\delta_{ij}, i, j = 1, 2, 3$ (ici, $\delta_{ij} = 1$ si i = j, 0 sinon). Les équations de l'élasticité linéaire sont données par :

$$\frac{\partial \sigma_{11}}{\partial x_1} + \frac{\partial \sigma_{12}}{\partial x_2} + \frac{\partial \sigma_{13}}{\partial x_3} + f_1 = 0, \tag{6}$$

$$\frac{\partial \sigma_{11}}{\partial x_1} + \frac{\partial \sigma_{12}}{\partial x_2} + \frac{\partial \sigma_{13}}{\partial x_3} + f_1 = 0,$$

$$\frac{\partial \sigma_{21}}{\partial x_1} + \frac{\partial \sigma_{22}}{\partial x_2} + \frac{\partial \sigma_{23}}{\partial x_3} + f_2 = 0,$$

$$\frac{\partial \sigma_{31}}{\partial x_1} + \frac{\partial \sigma_{32}}{\partial x_2} + \frac{\partial \sigma_{33}}{\partial x_3} + f_3 = 0.$$
(8)

$$\frac{\partial \sigma_{31}}{\partial x_1} + \frac{\partial \sigma_{32}}{\partial x_2} + \frac{\partial \sigma_{33}}{\partial x_3} + f_3 = 0.$$
 (8)

Soient $v, w \in \mathbb{R}^3$ et soit $x = (x_1, x_2, x_3) \in \mathbb{R}^3$. Déterminez lesquelles de ces affirmations sont correctes.

- 1. Les équations (6)-(8) peuvent s'écrire $\mu \Delta u + (\lambda + \mu) \operatorname{grad}(\operatorname{div}(u)) + f = 0$.
- 2. Les équations (6)-(8) peuvent s'écrire $\mu \operatorname{rot}(\operatorname{rot}(u)) + (\lambda + 2\mu) \operatorname{grad}(\operatorname{div}(u)) + f = 0$.
- 3. Si f = 0, $u(x) = v + w \wedge x$ est solution de (6)-(8).
- 4. Si f = 0, $u(x) = (x_2, 0, 0)$ est solution de (6)-(8).
- 5. Si f = 0, $u(x) = \frac{1}{2}(x_1, x_2, 0)$ est solution de (6)-(8).