Résumé sur les courbes

1 Courbes du plan

On considère une courbe du plan

$$c: I \longrightarrow \mathbb{R}^2$$

un point p=c(t) sur la courbe et un changement de paramétrage φ qui ne change pas le sens de parcours de la courbe.

Nom	Formule	dépend de φ	Propriétés
vecteur position	$\mathbf{p} = \mathbf{c}(t)$	non	
vecteur tangent (vecteur vitesse)	$\mathbf{c}'(t)$	oui	tangent à la courbe / sa norme donne la vitesse scalaire
vitesse scalaire	$v(t) = \ \mathbf{c}'(t)\ $	oui	
vecteur tangent unitaire	$\mathbf{T}(t) = \frac{\mathbf{c}'(t)}{v(t)}$	non	tangent à la courbe / sa norme vaut 1
vecteur accélération	$\mathbf{c}''(t)$	oui	pointe vers l'intérieur de la courbe
	$\mathbf{T}'(t)$	oui	orthogonal à $\mathbf{T}(t)$ / pointe vers l'intérieur de la courbe / colinéaire à l'accélération centripède
vecteur de courbure	$\mathbf{K}(t) = \frac{\mathbf{T}'(t)}{v(t)}$	non	orthogonal à $\mathbf{T}(t)$ / pointe vers l'intérieur de la courbe / sa norme est égale à la valeur absolue de la courbure
vecteur normal	$\mathbf{N}(t) = J(\mathbf{T}(t))$ rotation de $+\frac{\pi}{2}$	non	orthogonal à $\mathbf{T}(t)$ / de norme 1 / (\mathbf{T}, \mathbf{N}) forment un repère orthonormé direct
courbure (orientée)	$\kappa(t) = \frac{\det \left(\mathbf{c}'(t), \ \mathbf{c}''(t)\right)}{v(t)^3}$	non	positive si N et K ont le même sens i.e. si la courbe tourne vers la gauche
rayon de courbure	$r_c(t) = \frac{1}{ \kappa(t) }$	non	inverse de la valeur absolue de la courbure
centre du cercle osculateur	$\mathbf{C}_p = \mathbf{p} + r_c(t)\mathbf{N}(t)$	non	

1.1 Développée

La développée de c est l'ensemble des centres des cercles osculateurs pour tout point P de c. Par la dernière ligne du tableau ci-dessus, on obtient les équations de la développée d_c de c:

$$\mathbf{d_c}(t) = \mathbf{c}(t) + \frac{1}{\kappa(t)} \cdot J(\mathbf{T}(t)) = \mathbf{c}(t) + \frac{1}{v(t)\kappa(t)} \cdot \begin{pmatrix} -y'(t) \\ x'(t) \end{pmatrix}$$
$$= \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} + \frac{x'(t)^2 + y'(t)^2}{x'(t)y''(t) - y'(t)x''(t)} \begin{pmatrix} -y'(t) \\ x'(t) \end{pmatrix}$$

Si la courbe est donnée sous forme cartésienne explicite y = f(x) la formule donne les équations paramétriques de la développée:

$$d_c(a) = \begin{pmatrix} a \\ f(a) \end{pmatrix} + \frac{1 + f'(a)^2}{f''(a)} \begin{pmatrix} -f'(a) \\ 1 \end{pmatrix} \qquad \text{ce qui donne}$$

$$X_c(a) = a - \frac{(1 + f'(a)^2) \cdot f'(a)}{f''(a)}$$

$$Y_c(a) = f(a) + \frac{1 + f'(x)^2}{f''(a)}$$

1.2 Développante

Soit $\mathbf{c}(t) = (x(t), y(t))$ une courbe plane et $A = \mathbf{c}(t_0)$ un point donné de la courbe. Alors la développante de la courbe c par rapport à A est donnée par l'équation

$$\mathbf{\Gamma}(t) = \mathbf{c}(t) - L(t) \cdot \mathbf{T}(t) = \mathbf{c}(t) - \frac{L(t)}{v(t)} \cdot \mathbf{c}'(t)$$

avec

$$\mathbf{c}'(t) = (x'(t), y'(t))$$
 le vecteur tangent
$$v(t) = \|\mathbf{c}'(t)\|$$
 la norme du vecteur tangent

$$L(t) = \int_{t_0}^t v(\xi) d\xi$$
 la longueur de la courbe du point A au point P courant

2 Courbe de l'espace à 3 dimensions

On considère une courbe

$$c:I\longrightarrow\mathbb{R}^3$$

un point p=c(t) sur la courbe et un changement de paramétrage φ qui ne change pas le sens de parcours de la courbe.

Nom	Formule	dépend de φ	Propriétés
vecteur position	$\mathbf{p} = \mathbf{c}(t)$	non	
vecteur tangent (vecteur vitesse)	$\mathbf{c}'(t)$	oui	tangent à la courbe / sa norme donne la vitesse scalaire
vitesse scalaire	$v(t) = \ \mathbf{c}'(t)\ $	oui	
vecteur tangent unitaire	$\mathbf{T}(t) = \frac{\mathbf{c}'(t)}{v(t)}$	non	tangent à la courbe / sa norme vaut 1
vecteur accélération	$\mathbf{c''}(t)$	oui	pointe vers l'intérieur de la courbe
	$\mathbf{T}'(t)$	oui	orthogonal à T / pointe vers l'intérieur de la courbe
vecteur de courbure	$\mathbf{K}(t) = \frac{\mathbf{T}'(t)}{v(t)}$	non	orthogonal à T / pointe vers l'intérieur de la courbe / sa norme est égale à la courbure
courbure	$\kappa(t) = \ \mathbf{K}(t)\ $ $= \frac{\ \mathbf{c}'(t) \times \mathbf{c}''(t)\ }{\ \mathbf{c}'(t)\ ^3}$	non	inverse du rayon de courbure
rayon de courbure	$r_c(t) = \frac{1}{\kappa(t)}$	non	inverse de la courbure
torsion	$\tau(t) = \frac{[\mathbf{c}'(t), \mathbf{c}''(t), \mathbf{c}'''(t)]}{\ \mathbf{c}'(t) \times \mathbf{c}''(t)\ ^2}$	non	donne la tendance de la courbe à s'éloigner du plan os- culateur

La courbure donne la tendance de la courbe à s'éloigner de la tangente en pLa torsion donne la tendance de la courbe à s'éloigner du plan osculateur défini par les vecteurs $\mathbf{T}(t)$ et $\mathbf{K}(t)$. Une courbe plane dans \mathbb{R}^3 a donc une torsion nulle en tout point.