Comparaison de fonctions

(A) Au voisinage de $+\infty$

Lorsque x tend vers $+\infty$, on a les limites suivantes :

1. Si $\alpha < \beta$ alors

$$\lim_{x\to +\infty}\frac{x^\alpha}{x^\beta}=0$$

Autrement dit les puissances de x plus grandes dominent les plus petites.

EXEMPLE: x^4 domine x^3 quand x tend vers $+\infty$.

2. Pour tout $\alpha \in \mathbb{R}$ et tout $\beta > 0$ on a

$$\lim_{x \to +\infty} \frac{\ln^{\alpha}(x)}{x^{\beta}} = 0.$$

Autrement dit, toute puissance positive de x domine n'importe quelle puissance du logarithme.

EXEMPLE: la fonction \sqrt{x} domine la fonction $(\ln x)^{1000}$ quand x tend vers $+\infty$ c'est-à-dire que $\lim_{x\to +\infty} \frac{\ln^{1000}(x)}{\sqrt{x}} = 0$.

3. Pour tout $\beta \in \mathbb{R}$ et tout a > 1 on a

$$\lim_{x \to +\infty} \frac{x^{\beta}}{a^x} = 0.$$

Autrement dit, toute exponentielle croissante domine n'importe quelle puissance de x. Exemple: la fonction 2^x domine la fonction x^{50} quand x tend vers $+\infty$ c'est-à-dire que $\lim_{x\to +\infty}\frac{x^{50}}{2^x}=0$.

On peut résumer les points 1. à 3. en utilisant la notation de Landau et écrire au voisinage de $+\infty$:

$$x^{\alpha} = o(x^{\beta}) \qquad \forall \alpha < \beta$$
$$\ln^{\alpha}(x) = o(x^{\beta})$$
$$x^{\beta} = o(a^{x}) \qquad \forall a > 1$$

(B) Au voisinage de 0

Lorsque x tend vers 0, on a les limites suivantes :

1. Si n < m alors

$$\lim_{x \to 0} \frac{x^m}{x^n} = 0.$$

Autrement dit les puissances de x plus petites dominent les plus grandes. C'est l'inverse de ce qui se passe au voisinage de l'infini!!

EXEMPLE : dans la fonction $5x^2 + 3x^3$, au voisinage de 0, le terme dominant est $5x^2$. De plus

$$\lim_{x \to 0} \frac{5x^2 + 3x^3}{2x + 7x^2} = 0$$

car le terme dominant du dénominateur 2x domine le terme dominant du numérateur $5x^2$.

En utilisant la notation de Landau on peut écrire, au voisinage de 0 :

$$x^m = o(x^n) \qquad \forall m > n$$

2. Pour tout $\alpha > 0$ et $\beta \in \mathbb{R}$:

$$\lim_{x \to 0^+} x^{\alpha} \cdot \ln^{\beta}(x) = 0.$$

Autrement dit, au voisinage de 0, toute puissance positive de x domine n'importe quelle puissance du logarithme.

Notation de Landau

Définition : On dit qu'une fonction f est "un petit o de g" et on le note

$$f = o(g)$$
 au voisinage de a

 \sin

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 0.$$

Ici a peut aussi être $+\infty$ ou $-\infty$.

Exemples:

- (i) $x^2 + 10x^3 = o(x)$ au voisinage de 0.
- (ii) $100x^2 + 3x = o(x^3)$ au voisinage de $+\infty$ ou $-\infty$
- (iii) $x^{20} = o(e^x)$ au voisinage de $+\infty$ (MAIS PAS au voisinage de $-\infty$).
- (iv) ln(x) = o(x) au voisinage de $+\infty$.
- (v) Pour $\alpha > 0$, on a vu que $\lim_{x \to 0+} x^{\alpha} \ln x = 0$ pour tout $\alpha > 0$. On peut donc écrire que $\ln x = o\left(\frac{1}{x^{\alpha}}\right)$ au voisinage de 0^+ pour tout $\alpha > 0$

Règles de calculs avec les $o(x^n)$

1. Règle 1 : Toutes les constantes (même négatives) devant un $o(x^n)$ peuvent être remplacées par la constante 1.

En particulier les signes – peuvent (et doivent) être remplacés par des signes + lorsqu'ils sont appliqués à des termes $o(x^n)$.

Exemples:

(i) Au voisinage de 0 ou de $\pm \infty$ on a

$$o(3x^2) = o(x^2).$$

(ii) Au voisinage de 0 ou de $\pm \infty$ on a

$$-4 \cdot o(x^4) = o(x^4)$$

(iii) Au voisinage de 0 ou de $\pm \infty$ on a

$$o(x^2) - o(x^2) = o(x^2) + o(x^2) = 2o(x^2) = o(x^2).$$

Et PAS $o(x^2) - o(x^2) = 0!!!!!$

Par exemple $7x^3 - 4x^3 = 3x^3$ et les 3 fcts $7x^3$, $4x^3$ et $3x^3$ sont toutes des $o(x^2)$.

2. Règle 2 :

$$f \cdot o(g) = o(fg).$$

En particulier

$$x^n \cdot o(x^m) = o(x^{n+m}).$$

Exemples:

(i) Au voisinage de 0 ou de $\pm \infty$ on a

$$x^2 \cdot o(x^3) = o(x^5).$$

(ii) Au voisinage de 0 ou de $\pm \infty$ on a

$$(x^2 + 2x^3) \cdot o(x) = o(x^3) + 2o(x^4).$$

3. Règle 3 : Au voisinage de 0, dans une somme de $o(x^n)$ on ne garde que le terme avec le degré le plus bas.

Exemples:

(i) Au voisinage de 0 on a

$$5o(x^2) + 10o(x^4) - 3o(x^5) = o(x^2).$$

On a appliqué ici aussi la règle 1 pour changer le 5 en 1.

(ii) Au voisinage de 0 on a

$$x \cdot (o(x^2) - 10o(x) + 3o(x^3)) = o(x^2).$$

On a aussi appliqué ici les règles 1 et 2.

4. Règle 4 : Au **voisinage de** $\pm \infty$, dans <u>une somme</u> de $o(x^n)$ on ne garde que le terme avec le degré le plus **haut**.

EXEMPLES:

(i) Au voisinage de $\pm \infty$ on a

$$5o(x^2) + 10o(x^4) - 3o(x^5) = o(x^5).$$

On a appliqué ici aussi la règle 1 pour changer le 5 en 1.

(ii) Au voisinage de $\pm \infty$ on a

$$x \cdot (o(x^2) - 10o(x) + 3o(x^3)) = o(x^4).$$

On a aussi appliqué ici les règles 1 et 2.

Exemples au voisinage de x = a différent de 0

Ces 3 règles sont valables pour un développement limité (polynômes de Taylor) autour d'un point x = a quelconque. Mais si le développement limité n'est pas en 0 mais en $x = a \neq 0$ il faut appliquer le règles aux termes $o((x-a)^n)$ à la place de $o(x^n)$.

On reprend les exemples ci-dessus mais autour de x = 4.

Exemples:

(i) Au voisinage de 4 on a

$$o(3(x-4)^2) = o((x-4)^2).$$

Règle 1.

(ii) Au voisinage de 4 on a

$$-4 \cdot o((x-4)^4) = o((x-4)^4).$$

Règle 1.

(iii) Au voisinage de 4 on a

$$o((x-4)^2) - o((x-4)^2) = o((x-4)^2) + o((x-4)^2) = 2o((x-4)^2) = o((x-4)^2).$$

Règle 1.

(iv) Au voisinage de 4 on a

$$(x-4)^2 \cdot o((x-4)^3) = o((x-4)^5)$$

. Règle 2

(v) Au voisinage de 4 on a

$$[(x-4)^2 + 2(x-4)^3] \cdot o((x-4)) = o((x-4)^3) + 2o((x-4)^4) = o((x-4)^3).$$

Règles 1, 2 et 3!!

(vi) Au voisinage de 4 on a

$$5o((x-4)^2) + 10o((x-4)^4) - 3o((x-4)^5) = o((x-4)^2).$$

Règles 1 et 3

(vii) Au voisinage de 4 on a

$$(x-4) \cdot \left[o\left((x-4)^2\right) - 10o\left((x-4)\right) + 3o\left((x-4)^3\right) \right] = o\left((x-4)^2\right).$$

Règles 1, 2 et 3

Développement limité et extremum

Théorème : Soit f une fonction possèdant au voisinage de x_0 le développement limité suivant :

$$f(x) = f(x_0) + c_n \cdot (x - x_0)^n + o((x - x_0)^n)$$

avec n > 1 et $c_n \neq 0$.

Par hypothèse le terme en $x - x_0$ est nul et le point x_0 est donc un **point stationnaire**. Alors

- (i) si n est impair x_0 est **un plat** (et un point d'inflexion)
- (ii) si n est pair et $c_n > 0$ alors x_0 est un **minimum local**.
- (iii) si n est paitr et $c_n < 0$ alors x_0 est un **maximum local**.