

Section d'architecture SAR - Bachelor semestre 1

Fonctions trigonométriques et hyperboliques

Philippe Chabloz

Rappel de la 1ère seurosine

Of:
$$e^{\frac{2}{n}} = 1 + 2 + \frac{2^{2}}{2} + \dots + \frac{2^{n}}{n!} + \frac{2^{n$$

Formules de De Moivre

Les formules suivantes apparaissent dans l'*Introductio in analysin infinitorum* d'Euler qui les a démontrées, pour tout entier naturel n, en 1748. Mais elles apparaissent de manière implicite chez Abraham de Moivre à plusieurs reprises à partir de 1707, dans ses travaux sur les racines n-ièmes de nombres complexes.

$$\sin(nx) = \sum_{k=0}^{n} {n \choose k} (\sin x)^k (\cos x)^{n-k} \sin \frac{k\pi}{2} = \begin{cases} 0 & \text{s. } k = 0 \\ 1 & \text{k=1} \end{cases}$$

$$\cos(nx) = \sum_{k=0}^{n} {n \choose k} (\sin x)^k (\cos x)^{n-k} \cos \frac{k\pi}{2}$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 =$$

La **version avec l'exponentielle complexe est beaucoup plus simple** et se déduit immédiatement:

Four eix
$$(\cos x + i \sin x)^n = (e^{ix})^n = e^{ixn} = \cos(nx) + i \sin(nx)$$

$$(\cos x + i \sin x)^n = (e^{ix})^n = e^{ixn} = \cos(nx) + i \sin(nx)$$

$$(\cos x + i \sin x)^n = (e^{ix})^n = e^{ixn} = \cos(nx) + i \sin(nx)$$

Série de Taylor pour sinus et cosinus

La série de Taylor au point a d'une fonction indéfiniment dérivable f en ce point est une série entière $\sum c_n(x-a)^n$ construite à partir de f et de ses dérivées successives en a. Une fonction f est dite analytique en a quand cette série coïncide avec f au voisinage de a.

On peut définir les fonctions trigonométriques à l'aide de séries entières :

Brook Taylor 1685 - 1731

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^k \frac{x^{2k+1}}{(2k+1)!} + \dots = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^k \frac{x^{2k}}{(2k)!} + \dots = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

Nous avons déjà rencontré une autre série de Taylor. En effet, nous avons montré que pour la fonction exponentielle :

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

Série de Taylor du cosinus

Formule d'Euler pour i α :

$$e^{i\alpha} =$$

Formule d'Euler pour $-i\alpha$:

$$e^{i\alpha} = = \cos \alpha + i \sin \alpha \quad \text{(I)} \quad e^{-i\alpha}$$

$$e^{-i\alpha} = \cos(-\alpha) + i \cdot \sin(-\alpha) = \cos \alpha - i \cdot \sin \alpha \quad \text{(I)} \quad e^{-i\alpha}$$
iviaget were 2. Do môme, on soustrevent la 2ème ligne à la 1ère puis en

En additionnant les 2 lignes et en divisant par 2 on obtient

$$\cos\alpha = \frac{e^{i\alpha} + e^{-i\alpha}}{2}$$

De même en soustrayant la 2ème ligne à la 1ère puis en divisant par 2i on obtient:

$$\sin\alpha = \frac{e^{i\alpha} - e^{-i\alpha}}{2i}$$

$$e^{x} = \sum_{z=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

En utilisant la série de l'exponentielle dans la formule du cosinus ci-dessus on obtient

$$\cos x = \frac{1}{2} \cdot \left[e^{ix} + e^{-ix} \right] = \frac{1}{2} \cdot \left[\sum_{z=0}^{\infty} \frac{(ix)^n}{n!} + \sum_{z=0}^{\infty} \frac{(-ix)^n}{n!} \right] = 1 + \frac{i^2 x^2}{2!} + \frac{i^4 x^4}{4!} + \frac{i^6 x^6}{6!} + \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n}}{(2n)!}$$

$$e^{i\alpha} = Gas(\alpha) + i sin(\alpha)$$

$$e^{i\alpha} = Gas(\alpha) - i sin(\alpha)$$

$$(I) + (II) : e^{i\alpha} + e^{-i\alpha} = 2Gos\alpha$$

$$Gos\alpha = \frac{e^{i\alpha} + e^{-i\alpha}}{2}$$

$$(I) - (II) e^{i\alpha} - e^{-i\alpha} = 2i sin \alpha$$

$$Sin(\alpha) = \frac{e^{i\alpha} - e^{-i\alpha}}{2i}$$

$$\cos \alpha = \frac{1}{2} \left(e^{i\alpha} + e^{-i\alpha} \right) =$$

$$= \frac{1}{2} \left(1 + i\alpha + \frac{(i\alpha)}{2} + \frac{(i\alpha)}{3!} + \frac{(i\alpha)}{4!} + \frac{(i\alpha)}{5!} \right)$$

$$= e^{i\alpha} \qquad e^{i\alpha}$$

$$+ 1 + (-i\alpha) + (-i\alpha) + (-i\alpha) + (-i\alpha) + (-i\alpha) + \frac{(-i\alpha)}{5!}$$

$$= 1 - \frac{\alpha^2}{2} + \frac{\alpha^4}{4!} - \frac{\alpha^6}{6!} + \dots$$

Série de Taylor du sinus

En utilisant la série de l'exponentielle dans la formule du sinus ci-dessus on obtient

$$\sin x = \frac{1}{2i} \cdot \left[e^{ix} - e^{-ix} \right] = \frac{1}{2i} \cdot \left[\sum_{z=0}^{\infty} \frac{(ix)^n}{n!} - \sum_{z=0}^{\infty} \frac{(-ix)^n}{n!} \right] = x + \frac{i^3 x^3}{i \cdot 3!} + \frac{i^5 x^5}{i \cdot 5!} + \dots$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{(2n+1)!}$$

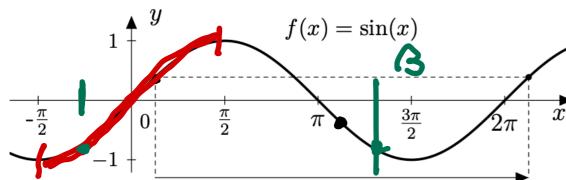
$$Sin(0,2) = 0,2 - \frac{(0,2)^3}{6} + \frac{(0,2)^5}{120} - \frac{(0,2)^7}{7!}$$

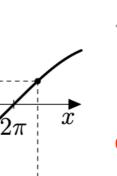
$$\frac{1}{57} \cdot \frac{1}{7!}$$

Graphes des fonctions trigonométriques : sinus et cosinus

Nous nous servons d'un système d'axes orthonormés dans lequel nous portons en abscisse les mesures en

radians (éventuellement en degrés) des angles.





* On peut constater que les fonctions sinus et cosinus sont **périodiques** de période 2π :

$$\sin(x + 2\pi) = \sin(x)$$
$$\cos(x + 2\pi) = \cos(x)$$

Autres propriétés:

 Les fonctions sinus et cosinus prennent des valeurs entre -1 et 1:

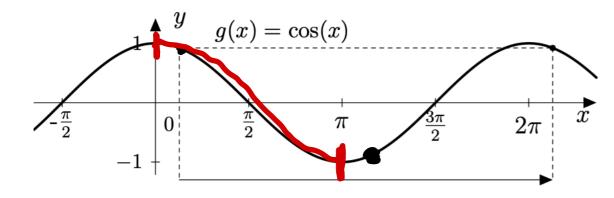
$$-1 \le \sin(x) \le 1$$
 et $-1 \le \cos(x) \le 1$.

* Le sinus est une fonction **impaire** car

$$\sin(-x) = -\sin(x)$$

Le cosinus est une fonction paire car

$$\cos(-x) = \cos(x)$$



Th: Sect foure fouchou continue Alors Pest injective (=) } Fest woustone

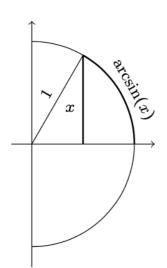
Les fonctions trigonométriques réciproques

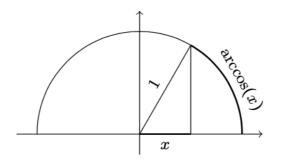
Les fonctions réciproques des fonctions sinus, cosinus et tangente sont appelées arcsin, arccos et arctan.

Pour définir ces fonctions réciproques, on doit restreindre chaque fonction trigonométrique à un intervalle sur lequel elle est <u>bijective</u>.

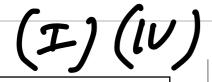
- * l'<u>arcsin</u> d'un nombre réel compris entre -1 et 1 est l'unique mesure d'angle en radians **entre** $-\pi/2$ **et** $\pi/2$ dont le **sinus** vaut ce nombre.
- * l'arccos d'un nombre réel compris entre -1 et 1 est l'unique mesure d'angle en radians entre 0 et π dont le cosinus vaut ce nombre.

* l'<u>arctan</u> d'un nombre réel compris est l'unique mesure d'angle en radians entre $-\pi/2$ et $\pi/2$ dont la tangente vaut ce nombre.

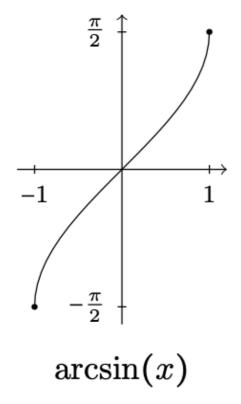




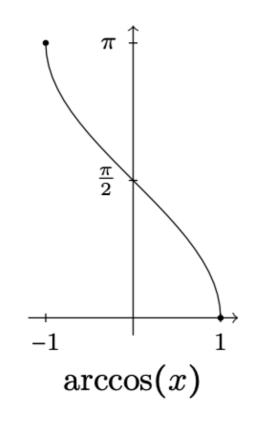
Graphiques des fonctions trigonométriques réciproques

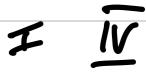


$$\arcsin: [-1,1] \mapsto [-\frac{\pi}{2}, \frac{\pi}{2}]$$

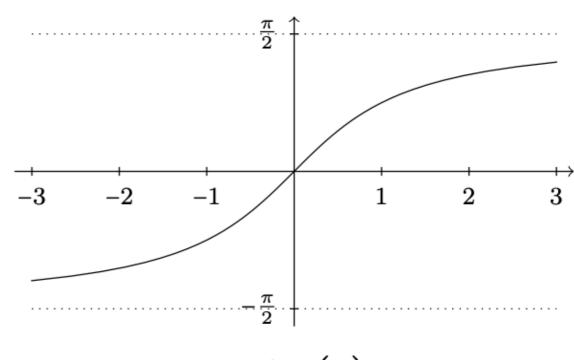


$$arccos: [-1,1] \mapsto [0,\pi]$$





$$[\arctan: \mathbb{R} \mapsto] -\frac{\pi}{2}, \frac{\pi}{2}[$$





 $\arcsin(\sin x) = x$ seulement si $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ MAIS $\sin(\arcsin x) = x$ pour tout $x \in [-1,1]$

$$arcsin(sin \propto) \neq \propto$$

$$sc' \propto \notin \left[\frac{\pi}{2}, \frac{\pi}{2}\right]$$

$$= \propto + 2\pi \cdot \kappa$$

$$\kappa \in \mathbb{Z}$$

$$f'(f(x)) = x$$

$$f(f'(y)) = y$$

Trigonométrie dans un triangle quelconque

Théorème du sinus

$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$$

Théorème de l'aire

$$Aire\Delta = \frac{1}{2}bc\sin(\alpha)$$

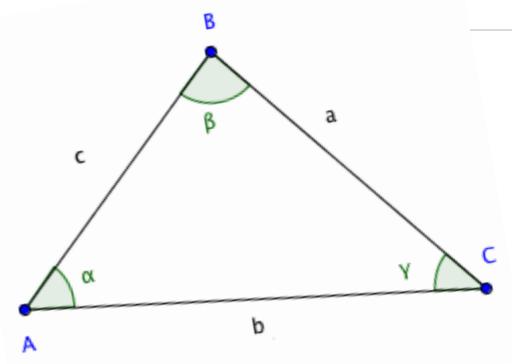
$$Aire\Delta = \frac{1}{2}ac \sin(\beta)$$

$$Aire\Delta = \frac{1}{2}ab \sin(\gamma)$$

Théorème du cosinus

$$a^{2} = b^{2} + c^{2} - 2bc \cos(\alpha)$$

 $b^{2} = a^{2} + c^{2} - 2ac \cos(\beta)$
 $c^{2} = a^{2} + b^{2} - 2ab \cos(\gamma)$



- * Un triangle est complètement déterminé dans les cas suivants :
 - 1. On en connaît un côté et deux angles (théorème du sinus).
 - 2. On en connaît deux côtés et un angle opposé à l'un d'entre eux (théorème du sinus).
 - 3. On en connaît **deux côtés et l'angle compris** entre ces deux côtés (théorème du cosinus).
 - 4. On en connaît trois côtés (théorème du cosinus).
- * On peut calculer l'aire sans connaître la hauteur (théorème de l'aire).

Exercice

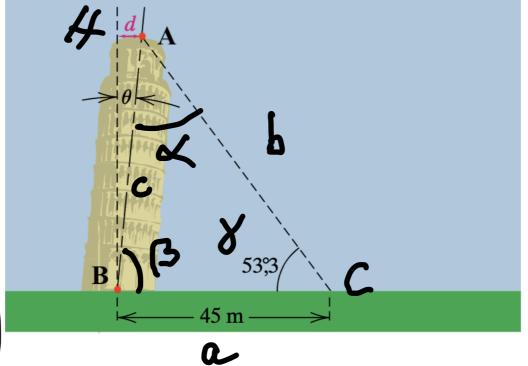
À l'origine, la tour de Pise était perpendiculaire à la surface du sol et mesurait 54 m de haut. Maintenant, elle penche d'un angle θ par rapport à la perpendiculaire, comme le montre la figure ci-dessous. Lorsque le sommet de la tour est observé à partir d'un point distant de 45 m du centre de sa base, l'angle d'élévation est de 53.3°.

Calcular l'angle θ C = 54.

- a. Calculer l'angle θ .
- b. Calculer la hauteur de la tour inclinée.

c. Calculer la distance d qui exprime de combien le centre du sommet de la tour s'est éloigné de la perpendiculaire.

14. Sinus	
<u>a</u> =	
sin(x)	Sih(Y)
5in(d) =	Sin (53,3°)
214(0)	Sin [53, 3°]



Scin(
$$\alpha$$
) = 0,6681
 $\alpha = 41,3$
 $\beta = 180^{\circ} - \alpha - \gamma$
 $\alpha = 84,77$
 $\beta = 5,22$

$$\frac{d}{d} = 5,22^{\circ}$$

$$\frac{d}{d} = 5,22^{\circ}$$

$$\frac{d}{d} = \frac{d}{54}$$

$$\frac{d}{54} =$$

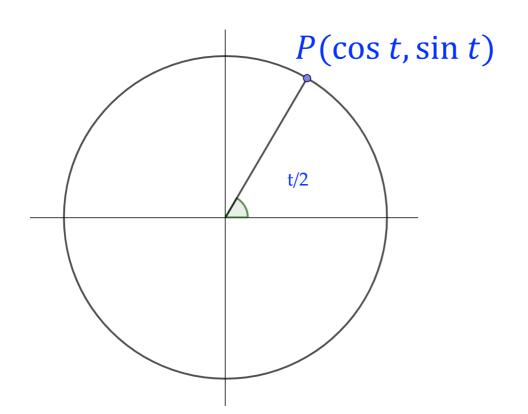
Cercle et hyperbole

cost + sint = 1

Soit
$$C = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$

un cercle de rayon 1 centré en $(0,0)$. Alors $P(\cos t, \sin t)$

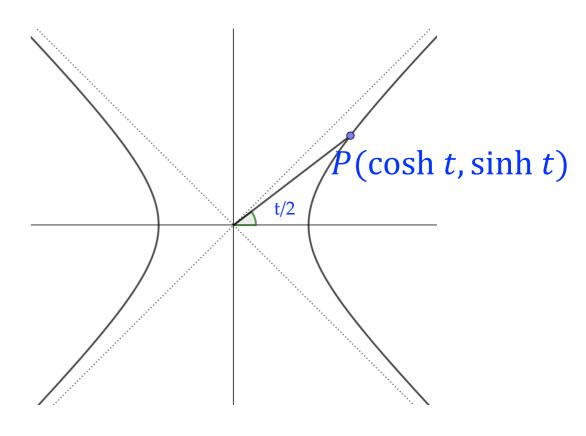
est un point sur le cercle $\mathcal C$ détermine une surface égale à t/2 .



Soit
$$H = \{(x, y) \in \mathbb{R}^2 : x^2 - y^2 = 1\}$$

une hyperbole centrée en (0,0). Alors $P(\cosh t, \sinh t)$

est un point sur l'hyperbole H qui détermine une surface égale à t/2.



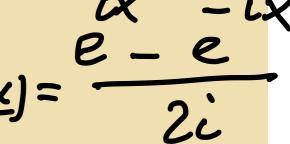
Les fonctions hyperboliques

Les fonctions hyperboliques sont analogues aux fonctions trigonométriques, mais le paramètre x ne peut pas être interprété comme un angle. Ce sont les fonctions :

Sinus hyperbolique :

Défini comme étant la partie impaire de la fonction exponentielle, c'est-à-dire par :

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$



Cosinus hyperbolique

Défini comme étant la partie paire de la fonction exponentielle, c'est-à-dire par :

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

Tangente hyperbolique

Défini comme le rapport entre les sinus hyperbolique et cosinus hyperbolique, c'est-à-dire par :

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \sim \frac{\sinh X}{\cosh X}$$

Propriétés des fonctions hyperboliques

 Les sinus et cosinus hyperboliques vérifient l'identité suivante :

$$\cosh^2(x) - \sinh^2(x) = 1$$

- * La fonction sinh est impaire et sinh(0) = 0.
- * La fonction cosh est paire et admet 1 pour minimum en x = 0.
- * La fonction cosinus hyperbolique est convexe. Elle intervient dans la définition de la *chaînette*, laquelle correspond à la forme que prend un câble suspendu à ses extrémités et soumis à son propre poids.
- * Les fonctions hyperboliques satisfont à des relations, très ressemblantes aux identités trigonométriques.

