Exercices — Série 5

Exercice 1. [Un exemple d'Euler, 1755]

Calculer la dérivée de la fonction $f(x) = e^{(e^{(e^x)})}$.

Exercice 2.

Soient f, g, h trois fonctions dérivables. Alors la dérivée de $y(x) = 1 + f(x^2)g(h(x))$ vaut

$$\Box y'(x) = 2xf(x^2)g'(h(x))h'(x)$$

$$\Box y'(x) = 2xf(x^2)g'(h'(x))$$

$$y'(x) = 2xf'(x^2)g(h(x)) + f(x^2)g'(h(x))h'(x)$$

$$y'(x) = 2xf'(x)g(h(x)) + f(x^2)g'(h(x))h'(x)$$

Exercice 3.

- 1) Si f(x) et g(x) sont dérivables sur]a,b[et f(x)>g(x) pour tout $x \in]a,b[$, alors f'(x)>g'(x) sur]a,b[.
- 2) Si f(x) est dérivable sur \mathbb{R} , et f(0) = f'(0) = 0, donc f(x) = 0 pour tout x.
- 3) Soit f(x) deux fois dérivables sur [0,1]. Si f'(x) > 0 en [0,1], donc f''(x) > 0 en [0,1]. \square

Exercice 4. [Euler, 1755]

Déterminer le tableau des variations de la fonction

$$y(x) = \frac{x}{1+x^2} ,$$

puis esquisser son graphe.

Exercice 5. [Euler, 1755]

La suite de nombres

$$\sqrt[4]{1} = 1$$
, $\sqrt[2]{2} \simeq 1.4142$, $\sqrt[3]{3} \simeq 1.4422$, $\sqrt[4]{4} \simeq 1.4142$, $\sqrt[5]{5} \simeq 1.3797$, ...

semble suggérer que la fonction $y(x) = \sqrt[x]{x} = x^{\frac{1}{x}}$ possède un maximum près de x = 3. Trouver où exactement et comparer avec la valeur minimale de la fonction $y(x) = x^x$.

Indication. Pour calculer la dérivée de $y(x) = x^{\frac{1}{x}}$ ou de $y(x) = x^x$, il peut être utile de se référer à la méthode utilisée pour a^x .

Exercice 6. La dérivée de la fonction $\arctan(\sqrt{x})$ en $x \in \mathbb{R}_+$ vaut

- $\frac{\sqrt{x}}{1+x}$
- $\frac{1}{1+x}$

Exercice 7. La dérivée de la fonction $y(x) = \ln\left(\frac{(x+2)^3(x+5)^7}{\sqrt{x-5}}\right)$, x > 5, vaut

- $y'(x) = \ln\left(\frac{21(x+2)^2(x+5)^6}{2(x-5)^{1/2}}\right)$
- $y'(x) = \frac{\sqrt{x-5}}{21(x+2)^2(x+5)^6}$
- $y'(x) = \frac{3}{x+2} + \frac{7}{x+5} \frac{1}{2(x-5)}$
- $y'(x) = \frac{\sqrt{x-5}}{(x+2)^3(x+5)^7}$

Exercice 8. Donner l'équation de la tangente à $y(x) = \frac{2e^x}{x^2 - 1}$ en x = 0.

- y = -2x + 4
- y = 2x 4
- $y = e^2x 2$
- y = -2x 2

Exercice 9.

Soit f(x) une fonction dont le développement limité en x = 0 est

$$f(x) = 10 - 6x^6 + o(x^6)$$

Alors

- f possède un maximum local en x = 0
- on ne peut pas savoir le type du point stationnaire en x = 0
- f possède un minimum local en x = 0
- f possède un point selle en x = 0

Exercice 10.

A l'aide du développement limité du sinus

$$\sin x = x - \frac{x^3}{3!} + o(x^4)$$

déterminer le développement limité d'ordre 5 de la fonction

$$f(x) = \sin(x^3) - \sin^3(x)$$

En déduire la valeur de la limite

$$\lim_{x \to 0} \frac{\sin(x^3) - \sin^3(x)}{x^5}$$

- +∞
- 3
- $\frac{1}{2}$

Exercice 11. [Leibniz, 1710]

Pour une fonction $y(x) = f(x) \cdot g(x)$, montrer que

$$y'' = f'' \cdot g + 2 \cdot f' \cdot g' + f \cdot g''$$
, et $y''' = f''' \cdot g + 3 \cdot f'' \cdot g' + 3 \cdot f' \cdot g'' + f \cdot g'''$,

puis extrapoler une formule générale pour la n-ième dérivée $y^{(n)}$.