Exercices — Série 4

Exercice 1. [Limites]

Calculer les limites suivantes.

1. $\lim_{x \to +\infty} \frac{\cos(\sqrt{x^3})}{x}$

2

1

 $+\infty$

2. $\lim_{x \to +\infty} \frac{\sin(\sqrt{x^2 + 5})}{x^3 + x^2 + 1}$

 $\frac{\sin(\sqrt{6})}{3}$

 $\sin(\sqrt{5})$

0

 $\cos(\sqrt{5})$

3. $\lim_{x \to +\infty} \frac{5x^2 - 3x + 2}{3x^2 + 7}$

 \square 2/7

| | 1

 ∞

 $\frac{1}{5/3}$

 $4. \lim_{x \to +\infty} \frac{\sqrt{x^2 + 2}}{2x}$

 \bigcap 0

1/2

 $1/\sqrt{2}$

5. $\lim_{x \to +\infty} \frac{x^5}{e^x}$

1/2

 $1/\sqrt{2}$

0

Exercice 2. [Limites bis]

Calculer les limites suivantes en utilisant les règles de calcul pour les limites et les critères donnés dans le cours pour lever les indéterminations.

 $(1) \lim_{x \to +\infty} \sqrt{x} \sin(\frac{1}{x})$

(5) $\lim_{x \to +\infty} x(\sqrt{x^4 + 6x + 3} - x^2)$

(2) $\lim_{x \to +\infty} x \cos(\frac{1}{x}) \sin(\frac{1}{x^2})$

(6) $\lim_{x \to +\infty} \sqrt{x} (\sqrt{x^3 + 2x} - \sqrt{x^3 + 4})$

(3) $\lim_{x \to +\infty} \frac{\sqrt{x^2 + 2} - \sqrt{x^2 + 3}}{5}$

 $(7) \lim_{n \to +\infty} (1 + \frac{2}{n})^n$

(4) $\lim_{x \to +\infty} (\sqrt{2x^2 + 3} - \sqrt{(2x+1)(x+4)})$ (8) $\lim_{n \to +\infty} (1 - \frac{1}{n})^n$

Exercice 3.

Calculer la dérivée de $\log_{10}(x)$, et plus généralement de $\log_a(x)$ (pour $a \neq 1$) en utilisant la règle de changement de base et la dérivée de la fonction $\ln(x)$.

Exercice 4.

Calculer la dérivée de la fonction

$$f(x) = \frac{1}{\arctan(x)} + \frac{(3+5x)}{(x+4x^2)} + \ln^2(x) .$$

Exercice 5. [Limites ter]

Pour les fonctions f(x) et les points x_0 ci-dessous, calculer, si elle existe, la limite $\lim_{x \to x_0} f(x)$. Sinon, montrer que la limite n'existe pas.

(6) $f(x) = \frac{\sqrt[3]{x} - 1}{x - 1}$ $x_0 = 1$

(2)
$$f(x) = \frac{x^2 + x - 6}{x^2 - 4}$$
 $x_0 = 2$

(3)
$$f(x) = x^2 \sin\left(\frac{1}{x}\right)$$
 $x_0 = 0$

Exercice 6.

Soient f, g et h trois fonctions dérivables. Alors la dérivée de $y(x) = f(x) \cdot g(x) \cdot h(x)$ vaut

$$\Box f'(x) \cdot g(x) \cdot h(x) + f(x) \cdot g'(x) \cdot h(x) + f(x) \cdot g(x) \cdot h'(x)$$

$$\Box f'(x) \cdot g'(x) \cdot h'(x)$$

$$\Box f'(x) \cdot (g'(x) \cdot h(x) + g(x) \cdot h'(x))$$

$$\Box f(x) \cdot (g'(x) \cdot h(x) + g(x) \cdot h'(x))$$

Exercice 7.

Soient f, g, h trois fonctions dérivables. Alors la dérivée de f(g(h(x))) vaut

$$\Box f'(g'(h'(x))) \qquad \Box f'(g(h(x)))g'(h(x))h'(x)$$

$$\Box f'(g(h(x)))g'(h(x)) \qquad \Box f'(g(h(x)))h'(x)$$

Exercice 8.

La dérivée de la fonction $f(x) = \frac{1}{\ln(x)}$ en $x \in \mathbb{R}^+ \setminus \{1\}$ vaut

$$\Box -\frac{x}{\ln^2(x)}$$

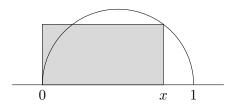
$$\Box -\frac{1}{x \ln^2(x)}$$

$$\Box -\frac{1}{\ln^2(x)}$$

$$\Box -\frac{1}{x\ln(x)}$$

Exercice 9. [Johann Bernoulli, ~1691]

Trouver x pour lequel le rectangle formé par l'abscisse et l'ordonnée d'un point sur le cercle $y = \sqrt{x - x^2}$ soit d'aire maximale.



S'assurer qu'il s'agit bien d'un maximum en étudiant le signe de la dérivée.

Exercice 10.

Donner l'équation de la tangente à $f(x) = \frac{2e^x}{x^2 - 1}$ en x = 0.

$$y(x) = -2x - 2$$

$$y(x) = 2x - 4$$

$$\Box y(x) = -2x + 4$$

$$\Box y(x) = e^2x - 2$$

Exercice 11.

La fonction $f(x) = \sin(x) - \cos(x)$ a la propriété suivante

$$\Box f'''(x) = f'(x)$$

$$\Box f(x) = f^{(5)}(x)$$

$$\Box f''(x) = f^{(4)}(x)$$

$$\Box f'(x) = f^{(5)}(x)$$