Exercice 1.

Considérons la fonction

$$\varphi \colon \mathbb{Z} \to \mathbb{N}, \quad n \mapsto \begin{cases} 2n & \text{si } n \ge 0 \\ -2n - 1 & \text{si } n < 0. \end{cases}$$

On vérifie aisément que φ est bijective, ce qui montre que $|\mathbb{N}| = |\mathbb{Z}|$.

Alternativement, on peut exhiber des fonctions injectives $\mathbb{N} \hookrightarrow \mathbb{Z}$ et $\mathbb{Z} \hookrightarrow \mathbb{N}$ puis conclure en utilisant le théorème de Cantor-Schröder-Bernstein.

Exercice 2.

Définissons $\eta \colon G/H \to F$ par

$$\eta(qH) := \phi(q), \quad \forall q \in G.$$

On vérifie que η a les propriétés désirées :

1. η est bien définie. En effet, supposons que gH = g'H. Cela implique qu'il existe $h \in H$ tel que g' = gh. On a alors

$$\eta(g'H) = \phi(g') \qquad = \qquad \phi(gh)$$

$$\phi \stackrel{\text{morphisme}}{=} \qquad \phi(g)\phi(h)$$

$$H \subset \ker \phi \qquad = \qquad \phi(g)e_H$$

$$= \qquad \phi(g)$$

$$= \qquad \phi(g)$$

$$= \qquad \eta(gH).$$

2. η est un morphisme. En effet,

$$\eta(gH \cdot g'H) = \eta(gg'H) = \phi(gg')$$

$$\stackrel{\phi \text{ morphisme}}{=} \phi(g)\phi(g')$$

$$= \eta(gH)\eta(g'H)$$

3. η est unique avec la propriété que $\eta \circ \xi = \phi$. En effet, si $\eta' : : G/H \to F$ est une fonction quelconque qui satisfait $\eta' \circ \xi = \phi$, alors pour tout $g \in G$ on a

$$\eta'(qH) = \eta'(\xi(q)) = \phi(q),$$

donc la restriction $\eta'|_{\mathrm{im}(\xi)} : \mathrm{im}(\xi) \to F$ satisfait

$$\eta'|_{\mathrm{im}(\xi)} = \eta|_{\mathrm{im}(\xi)}.$$

Mais ξ est surjective, donc $\eta' = \eta$.

Exercice 3.

Pour i = 1, 2, 3, prenons $h_i \in H$ et $f_i \in F$. On a d'une part :

$$[(h_1, f_1)(h_2, f_2)](h_3, f_3) = (h_1\phi_{f_1}(h_2), f_1f_2)(h_3, f_3)$$
$$= (h_1\phi_{f_1}(h_2)\phi_{f_1f_2}(h_3), f_1f_2f_3).$$

On a d'autre part:

$$(h_1, f_1)[(h_2, f_2)(h_3, f_3)] = (h_1, f_1)(h_2\phi_{f_2}(h_3), f_2f_3)$$

= $(h_1\phi_{f_1}(h_2\phi_{f_2}(h_3)), f_1f_2f_3).$

Remarquons maintenant que

$$\begin{array}{cccc} h_1\phi_{f_1}(h_2\phi_{f_2}(h_3)) & \stackrel{\phi_{f_1} \text{ morphisme}}{=} & h_1\phi_{f_1}(h_2)\phi_{f_1}(\phi_{f_2}(h_3)) \\ & = & h_1\phi_{f_1}(h_1)(\phi_{f_1}\circ\phi_{f_2})(h_3) \\ & \stackrel{\phi \text{ morphisme}}{=} & h_1\phi_{f_1}(h_1)\phi_{f_1f_2}(h_3). \end{array}$$

Grâce à ces égalités, on trouve que

$$[(h_1, f_1)(h_2, f_2)](h_3, f_3) = (h_1, f_1)[(h_2, f_2)(h_3, f_3)],$$

et donc que la loi de groupe est associative.

Exercice 4.

Soit G un groupe abélien d'ordre p^2 non-cyclique. On va montrer que $G \cong (\mathbb{Z}/p\mathbb{Z})^{\oplus 2}$.

Par le théorème de Lagrange, pour tout $x \in G$ on a $o(x) \in \{1, p, p^2\}$. Or G n'est pas cyclique, donc $o(x) \neq p^2$. Puisque o(x) = 1 si et seulement si pour $x = e_G$, on peut trouver $x \in G$ tel que o(x) = p. Prenons ensuite $y \in G \setminus \langle x \rangle$ (ce qui est possible puisque $|G| = p^2 > p = |\langle x \rangle|$). Puisque $y \neq e_G$, on a aussi o(y) = p.

Notons $X := \langle x \rangle, Y := \langle y \rangle$. Ces deux sous-groupes sont de cardinal p. On a ainsi $X \cong \mathbb{Z}/p\mathbb{Z} \cong Y$ par le Corollaire 3.5.37. Par le théorème de Lagrange, le cardinal de l'intersection $X \cap Y$ divise p. Cette intersection est donc soit triviale, soit égale à X et à Y; mais $X \neq Y$ par construction, donc $X \cap Y = \{e\}$.

Puisque G est abélien, Y est automatiquement contenu dans le normalisateur de X. De plus, $|G|=|X|\cdot |Y|$. Par le Théorème 3.8.13, on en déduit donc

$$G \cong X \rtimes_{\alpha} Y$$
, pour un certain $\alpha \colon Y \to \operatorname{Aut}(X)$.

Par la Remarque 3.8.11, puisque G est abélien, le morphisme α est trivial, et donc

$$G \cong X \times Y \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$$

comme annoncé.

Exercice 5. 1. Puisque σ fixe exactement deux éléments, son support Supp (σ) possède exactement 3 éléments. Si $\sigma = \sigma_1 \cdots \sigma_r$ est la décomposition en cycles disjoints, alors

$$\operatorname{Supp}(\sigma) = \bigsqcup_{i=1}^{r} \operatorname{Supp}(\sigma_i).$$

Comme $|\operatorname{Supp}(\sigma_i)| \geq 2$, on en déduit que r = 1 et que σ est un 3-cycle.

2. La permutation σ est uniquement déterminée par les 2 éléments fixés, et le 3-cycle induit sur les autres 3 éléments. Il y $\binom{5}{2} = 10$ possibilités de choisir 2 éléments distincts parmi $\{1,\ldots,5\}$; et les 3-cycles sur un ensemble $\{x,y,z\}$ sont les deux suivants :

$$x \to y \to z \to x$$
, $x \to z \to y \to x$.

Il y a donc $10 \cdot 2 = 20$ permutations de S_5 qui fixent exactement 2 éléments.

Exercice 6. 1. On $o(\sigma) = ppmc\{o(\sigma_1), \ldots, o(\sigma_r)\}$. Voir le corrigé de l'Exercice 5 de la série 4.

2. Prenons $H \leq S_4$ tel que $|H| = 6 = 2 \cdot 3$. Par le Corollaire 3.8.18 (que l'on peut appliquer, puisque $(\mathbb{Z}/3\mathbb{Z})^{\times}$ est d'ordre 2, donc cyclique car engendré par l'élément non-trivial), on a $H \cong \mathbb{Z}/6\mathbb{Z}$ ou $H \cong D_6$. On va d'abord écarter le premier cas. En effet, si $H \cong \mathbb{Z}/6\mathbb{Z}$, alors H est cyclique. Donc il existe $\sigma \in S_4$ d'ordre 6 qui engendre H. Par le point précédent, on a alors que σ est soit un 6-cycle, soit un produit d'un 2-cycle et d'un 3-cycle disjoint. En particulier $|\operatorname{Supp}(\sigma)| \geq 5$. Mais $\sigma \in S_4$, c'est une contradiction.

Ainsi $H \cong D_6$. Or $D_6 \cong S_3$ par la Remarque 3.6.10, donc $H \cong S_3$.

Exercice 7. 1. Il est clair que $F := \{e, -e\}$ est un sous-groupe d'ordre 2. Soit $H \leq Q_8$ un sous-groupe et supposons qu'il existe $x \in H$ tel que $x \notin F$. Alors $x \in \{i, i^3, j, j^3, k, k^3\}$, et dans tous les cas on trouve $x^2 = -e$. Donc $F \subsetneq H$. Ceci montre que F est l'unique sous-groupe d'ordre 2, et que F est contenu dans tous les sous-groupes d'ordre 4.

2. Supposons par l'absurde qu'on puisse écrire $Q_8 \cong A \rtimes_{\alpha} B$, pour des groupes A, B non-triviaux et un homomorphisme $\alpha \colon B \to \operatorname{Aut}(A)$. Puisque l'ensemble sous-jacent de $A \rtimes_{\alpha} B$ est le produit cartésien $A \times B$, on a $8 = |Q_8| = |A| \cdot |B|$. Comme A et B ne sont pas triviaux, on a $|A|, |B| \geq 2$. Donc l'un des deux groupes est d'ordre 2 et l'autre est d'ordre 4.

Par la Proposition 3.8.10, les sous-ensembles

$$A \times \{e_B\} \subset A \rtimes_{\alpha} B$$
, $\{e_A\} \times B \subset A \rtimes_{\alpha} B$

sont des sous-groupes, isomorphes à A et B respectivement. Il est clair que

$$(A \times \{e_B\}) \cap (\{e_A\} \times B) = \{e_{A \rtimes_{\alpha} B}\}.$$

Donc $A \rtimes_{\alpha} B$ possède un sous-groupe d'ordre 2 et un sous-groupe d'ordre 4, et le premier n'est pas inclus dans le second. Or cela n'est pas possible dans Q_8 , comme on l'a vu au point précédent.

On a obtenu une contradiction, ce qui signifie que Q_8 n'est pas un produit semi-direct non-trivial.

Exercice 8.

On prétend d'abord que $G \cong \mathbb{F}_2^{\oplus 2}$. En effet, on a

$$\begin{pmatrix} 1 & 0 & x \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & a+x \\ 0 & 1 & b+y \\ 0 & 0 & 1 \end{pmatrix}$$

et il s'ensuit que la fonction

$$\varphi \colon \mathbb{F}_2^{\oplus 2} \longrightarrow G, \quad (x,y) \mapsto \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$$

est un isomorphisme. En particulier, le groupe G est 2-torsion.

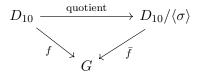
Ecrivons $\sigma \in D_{10}$ le cycle d'ordre 5, $\tau \in D_{10}$ l'involution d'ordre 2, avec $D_{10} = \langle \sigma, \tau \rangle$. Prenons $f \in \text{Hom}(D_{10}, G)$. Alors $f(\sigma)^2 = e_G$ car G est 2-torsion, et $f(\sigma)^5 = e_G$ car $\sigma^5 = e_{D_{10}}$. Donc

$$e_G = f(\sigma)^5 = f(\sigma)^2 f(\sigma)^2 f(\sigma) = f(\sigma).$$

Donc $\langle \sigma \rangle \subseteq \ker f$ pour tout $f \in \operatorname{Hom}(D_{10}, G)$. En particulier, par l'Exercice 2, on obtient une bijection

$$\operatorname{Hom}(D_{10}, G) \xrightarrow{\sim} f \in \operatorname{Hom}(D_{10}/\langle \sigma \rangle, G), \quad f \mapsto \bar{f}$$

où \bar{f} est l'unique morphisme qui fait commuter le diagramme



Puisque $o(\sigma) = 5$, on a $|D_{10}/\langle \sigma \rangle| = 10/5 = 2$. Donc $D_{10}/\langle \sigma \rangle \cong \mathbb{Z}/2\mathbb{Z}$. On a vu en cours (et en série d'exercice) qu'il y a autant de morphismes $\mathbb{Z}/2\mathbb{Z} \to G$ qu'il y a d'éléments de 2-torsion dans G. Or G est 2-torsion, et donc

$$|\operatorname{Hom}(D_{10},G)| = |\operatorname{Hom}(D_{10}/\langle \sigma \rangle,G)| = |\operatorname{Hom}(\mathbb{Z}/2\mathbb{Z},G)| = |G| = 4.$$

Exercice 9. 1. Prenons $f \in F$ et $h \in Z(G)$. Alors

$$fhf^{-1} = hff^{-1} = h.$$

Donc la fonction

$$\operatorname{Ad}_f^{Z(G)}\colon Z(G)\to Z(G),\quad h\mapsto fhf^{-1}=h$$

est l'identité sur $\mathrm{Ad}_f^{Z(G)}$. En particulier $\mathrm{Ad}_F^{Z(G)}\colon F\to \mathrm{Aut}(Z(G))$ est le morphisme trivial.

2. Supposons que $|G| = p^2$ et que |Z(G)| = p. Alors $Z(G) \subsetneq G$, et donc G n'est pas abélien. Prenons $x \in G \setminus Z(G)$; alors $o(x) \in \{p, p^2\}$, et puisque G n'est pas abélien il n'est pas cyclique, donc on a forcément o(x) = p. Posons $F := \langle x \rangle$.

L'intersection $I := F \cap Z(G)$ est un sous-groupe de F. Par le théorème de Lagrange, on a $|I| \in \{1, |F| = p\}$. Si $\{e_G\} \subseteq I$, alors |I| = p = |F| et donc I = F. Mais dans ce cas $x \in I \subseteq Z(G)$, contradiction avec le choix de x. Donc $I = \{e_G\}$.

De plus $N_G(Z(G)) = G$ car Z(G) est normal, et donc $F \subset N_G(Z(G))$. Finalement $|G| = p^2 = p \cdot p = |F| \cdot |Z(G)|$.

On peut ainsi appliquer le Théorème 3.8.13 pour trouver

$$G\cong Z(G)\rtimes_{\operatorname{Ad}_F^{Z(G)}}F.$$

Or on a vu
 au premier point que $\mathrm{Ad}_F^{Z(G)}$ est trivial, et donc

$$G \cong Z(G) \times F$$
.

Les groupes Z(G) et F sont d'ordres p, donc abéliens (voir le Corollaire 3.5.37), et donc G est abélien. Mais on a vu plus haut que G ne pouvait être abélien, on obtient donc une contradiction.

3. Considérons le groupe

$$U(3, \mathbb{F}_p) = \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{F}_p \right\}$$

On vérifie aisément que

$$Z(U(3, \mathbb{F}_p)) = \left\{ \begin{pmatrix} 1 & 0 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid y \in \mathbb{F}_p \right\}.$$

Ainsi $|U(3, \mathbb{F}_p)| = p^3$ et $|Z(U(3, \mathbb{F}_p))| = p$.