Exercices Structures Fondamentales Semaine 8

EPFL, Semestre d'automne 2024

- **Exercice 1.** 1. Montrez que $\operatorname{End}(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$ contient exactement 16 éléments.
 - 2. Montrez que $\operatorname{Aut}(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z})$ contient exactement 6 éléments.

Exercice* 2.

On écrit Z(G) pour le centre d'un groupe G.

1. Soit $f \colon G \twoheadrightarrow H$ un homomorphisme de groupes surjectif. Montrez que

$$f(Z(G)) \subseteq Z(H)$$
.

2. Donnez un exemple d'un homomorphisme surjectif $f: G \to H$ tel que

$$f(Z(G)) \subsetneq Z(H)$$
.

3. Donnez un exemple d'un homomorphisme $f: G \to H$ tel que

$$f(Z(G)) \nsubseteq Z(H)$$
.

- 4. Soit $f: G \to H$ injectif et $f(G) \subset Z(H)$. Montrez que G est abélien.
- 5. Soient G, H deux groupes. Montrez que $Z(G \times H) \cong Z(G) \times Z(H)$.
- **Exercice 3.** 1. Montrez que $\mathbb{Z}/nm\mathbb{Z}$ et $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ sont isomorphes entre eux si et seulement pgcd(n,m) = 1.

Indication: Si pgcd(n,m) = 1, construisez un homomorphisme $\mathbb{Z}/nm\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ et étudiez ensuite son noyau. Si $pgcd(n,m) \neq 1$, étudiez les ordres des éléments des deux groupes.

2. ("Théorème des restes chinois".) Soit n_1, \ldots, n_r des entiers ≥ 2 et deux-à-deux premiers entre eux. Montrez que

$$\mathbb{Z}/(n_1\cdots n_r)\mathbb{Z} \cong \prod_{i=1}^r \mathbb{Z}/n_i\mathbb{Z}.$$

3. Trouvez les solutions dans \mathbb{Z} du système de congruences suivants en utilisant le point précédent:

$$\begin{cases} x \equiv 1 \pmod{57} \\ x \equiv 2 \pmod{121} \end{cases}$$

4. Pour rappel, la fonction phi d'Euler $\phi \colon \mathbb{N} \to \mathbb{N}$ est définie par $\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^{\times}|$. Montrez que $\phi(mn) = \phi(m)\phi(n)$ si m et n sont premiers entre eux et déduisez en que

$$\phi(n) = p_1^{k_1 - 1}(p_1 - 1)p_2^{k_2 - 1}(p_2 - 1)\dots p_r^{k_r - 1}(p_r - 1),$$

où $n = p_1^{k_1} \dots p_r^{k_r}$ est la factorisation de n en nombres premiers.

Exercice 4.

Montrez que les sous-groupes de \mathbb{Z} sont tous de la forme $n\mathbb{Z}$, avec $n \in \mathbb{Z}$.

Exercice 5.

Soit $n \geq 2$ un entier.

1. Montrez que les sous-groupes de $\mathbb{Z}/n\mathbb{Z}$ sont donnés par les sous-ensembles

$$d\mathbb{Z}/n\mathbb{Z} := \{ [rd] \in \mathbb{Z}/n\mathbb{Z} \mid r \in \mathbb{Z} \}$$

où $0 < d \le n$ divise n.

- 2. Si n = dm, montrez que $d\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z}$.
- 3. Montrez que $[k] \in \mathbb{Z}/n\mathbb{Z}$ engendre (génère) le groupe entier $\mathbb{Z}/n\mathbb{Z}$ si et seulement si pgcd(k,n) = 1.
- 4. Déduisez que pour tout $n \geq 2$,

$$n = \sum_{d|n} \phi(d).$$

Indication : remarquez que chaque élément de $\mathbb{Z}/n\mathbb{Z}$ engendre un sousgroupe ; et que le nombre d'éléments engendrant ce sous-groupe peut être calculé grâce à la fonction phi d'Euler.