Exercices Structures Fondamentales Semaine 7

EPFL, Semestre d'automne 2024

Exercice 1.

Montrez que tous les groupes d'ordre 2 sont isomorphes entre eux.

Exercice 2.

Montrez que tous les groupes d'ordre 3 sont isomorphes entre eux.

Exercice 3.

Montrez que $\mathbb{Z}/4\mathbb{Z}$ n'est pas isomorphe à $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Exercice 4. 1. Soit G un groupe. Construisez une bijection explicite entre $\{\text{homomorphismes } \mathbb{Z}/2\mathbb{Z} \to G\}$ et $\{g \in G \mid g^2 = e_G\}$.

2. Montrez que $(\mathbb{Z}/8\mathbb{Z})^{\times} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Exercice* 5.

Soit G un groupe. Pour $s \in G$, définissons $L_s : G \to G$ par $L_s(t) = st$ pour tout $t \in G$ (L_s est donc la multiplication à gauche, aussi appelée **translation** à gauche par s).

- 1. Soit Bij(G) l'ensemble de toutes les bijections de G sur lui-même, c'està-dire, toutes les permutations de G. Montrez que pour tout $s \in G$, $L_s \in Bij(G)$.
- 2. Montrez que l'application

$$\Lambda: G \to \mathrm{Bij}(G), \quad s \mapsto L_s$$

est un homomorphisme de groupes.

3. Montrez que Λ est injective.

Exercice 6.

Soit $n \geq 2$ un nombre entier. On rappelle que $\operatorname{End}(\mathbb{Z}/n\mathbb{Z})$, l'ensemble des endomorphismes de $\mathbb{Z}/n\mathbb{Z}$, est égal à

$$\{m_d \colon \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \mid 0 \le d \le n\}$$

où m_d désigne l'application de la multiplication par d. On a aussi une bijection $\theta: \operatorname{End}(\mathbb{Z}/n\mathbb{Z}) \to \mathbb{Z}/n\mathbb{Z}$ définie par

$$\theta(f) = f([1])$$

pour tout $f \in \text{End}(\mathbb{Z}/n\mathbb{Z})$.

Montrez que θ induit un isomorphisme de groupes $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.