Exercices structures algébriques Semaine 6

EPFL, Semestre d'automne 2023

Exercice 1.

Soit G un groupe. Montrer que $\forall g \in G$ et $\forall m, n \in \mathbb{Z}$ on a $g^{m+n} = g^m g^n$.

Exercice 2.

Fixons un entier $n \geq 1$. Un **cycle** de S_n est une permutation définie de la manière suivante. Prenons des entiers distincts $i_1, \ldots, i_r \in \{1, \ldots, n\}$ avec $r \geq 2$; le cycle $\sigma := (i_1 \ldots i_r)$ est la permutation définie par

$$\sigma(i_j) = i_{j+1} \text{ pour } j < r, \quad \sigma(i_r) = i_1, \quad \sigma(m) = m \text{ pour } m \notin \{i_1, \dots, i_r\}.$$

On appelle r la **longueur** du cycle σ , et l'ensemble $\{i_1, \ldots, i_r\}$ le **support** de σ . Deux cycles $(i_1 \ldots i_r)$ et $(j_1 \ldots j_s)$ sont (à supports) disjoints si

$$\{i_1,\ldots,i_r\}\cap\{j_1,\ldots,j_s\}=\emptyset.$$

On travaille dans le groupe S_5 .

- 1. Ecrire les permutations suivantes sous la forme vue en cours:
 - (1 3 4)
 - $-(1 \ 2 \ 3)(3 \ 1 \ 4)$
 - $-(5 \ 3 \ 1)(1 \ 2)(2 \ 3 \ 1 \ 4)$
- 2. Ecrire les permutations suivantes sous la forme de produits de cycles disjoints :
 - $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 2 & 5 \end{pmatrix}$
 - $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 2 & 5 \end{pmatrix}$
 - $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}$

$$-\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
4 & 5 & 3 & 1 & 2
\end{pmatrix}$$

$$-(1 & 2 & 3)(2 & 3 & 1)(3 & 1 & 2)$$

$$-(5 & 3 & 2)(1 & 2)(2 & 3 & 1 & 4)$$

$$-(2 & 3 & 1)(1 & 2 & 3)(2 & 3 & 1 & 4)$$

Exercice 3.

Fixons un entier $n \ge 1$. Prouvez les assertions suivantes :

- 1. Un cycle (de longueur ≥ 2) n'est jamais égal à e_{S_n} .
- 2. Soient σ et σ' des cycles disjoints. Alors $\sigma\sigma' = \sigma'\sigma$.
- 3. Tout élément de S_n différent de l'identité peut s'écrire comme produit de cycles disjoints, et ces cycles sont uniquement déterminés.
- 4. Soient $\sigma_1, \ldots, \sigma_m \in S_n$ des cycles deux-à-deux disjoints. Montrez que

$$o\left(\prod_{i=1}^{m} \sigma_i\right) = \operatorname{ppcm}\{o(\sigma_1), \dots, o(\sigma_m)\}.$$

5. Si $\sigma \in S_n$, alors $\sigma^{n!} = e_{S_n}$.

Exercice* 4.

Soit $n \geq 2$ un nombre entier.

1. Montrez que End($\mathbb{Z}/n\mathbb{Z}$), l'ensemble des endomorphismes de $\mathbb{Z}/n\mathbb{Z}$, est égal à

$$\{m_d \colon \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \mid 0 \le d < n\}$$

où m_d désigne l'application de la multiplication par d.

2. En déduire que l'application $\theta : \operatorname{End}(\mathbb{Z}/n\mathbb{Z}) \to \mathbb{Z}/n\mathbb{Z}$ définie par

$$\theta(f) = f([1])$$

pour tout $f \in \text{End}(\mathbb{Z}/n\mathbb{Z})$ est une bijection.

Exercice 5.

Donnez la liste de tous les homomorphismes de groupes entre $\mathbb{Z}/3\mathbb{Z}$ et $\mathbb{Z}/2\mathbb{Z}$ (dans un sens ou dans l'autre).