Exercices structures algébriques Semaine 3

EPFL, Semestre d'automne 2024

Exercice 1.

Dans les cas suivants, est-ce que $\mathcal{R} \subset \mathbb{R} \times \mathbb{R}$ est une relation d'équivalence sur \mathbb{R} ?

- 1. $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \mid x = -y\},\$
- 2. $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \mid |x y| < 1\},\$
- 3. $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \mid x^2 y = 1\},\$
- 4. $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \mid x^2 y^2 = x y\}.$

Exercice 2.

Soit R la relation d'équivalence sur $\{1,2,3,4,5\}$ dont la partition associée est $\{1,2\}, \{3\}$ et $\{4,5\}$. Pour chaque relation d'équivalence $S \subseteq \{1,2,3,4,5\} \times \{1,2,3,4,5\}$ telle que $R \subseteq S$, déterminer:

- 1. S comme un sous-ensemble de $\{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4, 5\}$
- 2. La partition associée à S
- 3. Le nombre des éléments de $\{1, 2, 3, 4, 5\}/S$

Exercice* 3.

Soit E un ensemble. On définit la relation suivante sur 2^E :

$$\mathcal{R} = \{(A, B) \in 2^E \times 2^E \mid A = B \text{ ou } A = E \setminus B\}.$$

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. On suppose que E est un ensemble fini. Quel est le cardinal de $2^E/\mathcal{R}$?

Exercice 4 (Tiré en arrière d'une relation d'équivalence).

Soient $f: Y \to X$ une application entre ensembles, et \mathcal{R} une relation d'équivalence sur X. On définit $f^*\mathcal{R} \subset Y \times Y$ par:

$$f^*\mathcal{R} = \{(a,b) \in Y \times Y \mid (f(a), f(b)) \in \mathcal{R}\}.$$

- 1. Montrer que $f^*\mathcal{R}$ est une relation d'équivalence sur Y.
- 2. Montrer que f induit une application $\tilde{f}: Y/f^*\mathcal{R} \to X/\mathcal{R}$.
- 3. Montrer que \tilde{f} est injective.

Exercice 5.

Soit $\mathcal R$ la relation d'équivalence sur $\mathbb N$ définie comme suit:

$$(m_1, n_1) \equiv (m_2, n_2)$$

si $m_1 + n_2 = n_1 + m_2$.

- Montrer que \equiv est une relation d'équivalence sur \mathbb{N} .
- Montrer que le quotient de $\mathbb{N} \times \mathbb{N}$ par \mathcal{R} est en bijection avec \mathbb{Z} .

Exercice* 6.

Soit A, B deux ensembles. Montrer qu'il existe une surjection A woheadrightarrow B si et seulement si il existe une injection $B \hookrightarrow A$ entre les deux.

Indication: On rapelle l'axiome du choix: Si des A_i ($i \in I$) sont des ensembles non vides alors on peut choisir un élément $a_i \in A_i$ pour tout $i \in I$.