Exercices structures algébriques Semaine 1

EPFL, Semestre d'automne 2024

Les exercices marqués par un * peuvent être rendus jusqu'à la fin de la session d'exercices.

Exercice 1.

Soient P, Q, R des expressions logiques. Démontrer les tautologies suivantes :

1. L'énoncé

$$P \land \neg P \Rightarrow Q$$

2. La règle de double négation, c'est-à-dire l'implication

$$\neg \neg P \Rightarrow P$$

3. Le modus ponens, c'est-à-dire l'implication

$$(P \land (P \Rightarrow Q)) \Rightarrow Q$$

4. L'énoncé

$$\neg (P \Rightarrow Q) \iff P \land \neg Q$$

5. * L'énoncé

$$(P \land (Q \lor R)) \iff ((P \land Q) \lor (P \land R))$$

Exercice* 2.

Démontrer par induction (=recurrence) pour tout entier $n \geq 1$ la formule

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$
.

Exercice 3.

Trouver l'erreur dans la preuve de l'énoncé suivant :

Proposition.

Tous les chevaux d'un groupe de $n \ge 1$ chevaux sont de la même couleur.

 $D\'{e}monstration$. $\mathbf{n}=1$: Tous les chevaux d'un groupe de n=1 chevaux sont de la même couleur, car il n'y a qu'un seul cheval.

 $\mathbf{n} \to \mathbf{n} + \mathbf{1}$: Supposons que tous les chevaux d'un groupe de n chevaux sont de la même couleur. Considérons maintenant un groupe de n+1 chevaux $h_1, h_2, h_3, \ldots, h_n, h_{n+1}$. Notez que les chevaux h_1, h_2, \ldots, h_n forment un groupe de n chevaux, et donc, doivent tous être de la même couleur. Aussi, les chevaux $h_2, h_3, \ldots, h_{n+1}$ forment un groupe de n chevaux, et donc, doivent tous être de la même couleur. Puisque ces deux groupes de chevaux ont les membres h_2, h_3, \ldots, h_n en commun, tous les n+1 chevaux doivent être de la même couleur.

Exercice 4.

Un entier positif p est un nombre premier s'il est divisible par exactement deux entiers positifs distincts (1 et lui-même). Montrer par induction que tout entier $n \ge 2$ peut s'écrire comme un produit de nombres premiers

$$n = p_1 \cdot p_2 \cdot \dots \cdot p_k,$$

et que les nombres premiers p_1, \ldots, p_k sont uniques quitte à les réordonner.

Exercice 5 (Exercice difficile).

Soient $a_1, a_2, a_3 \dots$ des nombres réels tels que pour tout entiers positifs i, j on a $a_{i+j} \leq a_i + a_j$. Démontrer par induction pour tout entier $n \geq 1$ l'inéquation

$$a_n \le a_1 + \frac{a_2}{2} + \frac{a_3}{3} + \dots + \frac{a_n}{n}$$
.