Exercices structures fondamentales Semaine 13

EPFL, Semestre d'automne 2024

Exercice 1.

Montrez que le groupe multiplicatif $\mathbb{Q}_{>0}$ n'est pas de type fini.

Exercice 2.

Soit $n \geq 3$.

1. Montrez que S_n est engendré par les transpositions

$$(1\ 2), (2\ 3), \ldots, (n-1\ n).$$

Indication : il suffit de montrer que le sous-groupe engendré par ces transpositions contient toutes les transpositions de S_n .

- 2. Montrez que S_n est engendré par $(1\ 2)$ et $(2\ 3\ \dots\ n)$.
- 3. Soit $H \leq S_n$ un sous-groupe engendré par 2 transpositions distinctes. Montrez que soit $H \cong S_3$, soit $H \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Exercice 3.

Soit $n \geq 3$. Montrez que A_n est engendré par des 3-cycles.

Exercice 4.

Rappelez-vous la définition pour $n \geq 3$:

 $D_{2n} = \{\sigma \in S_n \, | \, \forall 1 \leq i,j \leq n \ : \ [i],[j] \ \text{adjacent dans} \ \mathbb{Z}/n\mathbb{Z} \Rightarrow [\sigma(i)],[\sigma(j)] \ \text{adjacent dans} \ \mathbb{Z}/n\mathbb{Z} \}$

- 1. Montrer que $D_{2n} < S_n$.
- 2. Soit $\sigma, \tau \in D_{2n}$ comme dans le cours et considérons l'ensemble $S = \{\sigma^i, \sigma^i \tau \mid 0 \le i \le n-1\}$. Montrer que |S| = 2n.

3. Quels sont les ordres des éléments de \mathcal{D}_{2n} ?

Exercice 5.

Fixons un entier $n \geq 3$.

- 1. Prouvez les relations suivantes :
 - (a) $\tau \sigma^i \tau = \sigma^{-i}$ pour tout $i \in \mathbb{Z}$;
 - (b) $(\tau \sigma^j)^{-1} \sigma^i (\tau \sigma^j) = \sigma^{-i}$ pour tout $i, j \in \mathbb{Z}$;
 - (c) $(\tau \sigma^j)^{-1} \tau \sigma^i (\tau \sigma^j) = \tau \sigma^{2j-i}$ pour tout $i, j \in \mathbb{Z}$.
 - (d) $(\sigma^j)^{-1}\tau\sigma^i(\sigma^j) = \tau\sigma^{2j+i}$ pour tout $i, j \in \mathbb{Z}$.
- 2. Déterminez les classes de conjugaison de D_{2n} . Indication : elles seront différentes suivant la parité de n.
- 3. Déterminez le centre de D_{2n} .
- 4. Montrer que $\langle \sigma \rangle \leq D_{2n}$ est normal et montrer que $D_{2n}/\langle \sigma \rangle \cong \mathbb{Z}/2\mathbb{Z}$.

Exercice* 6 (Troisième théorème d'isomorphisme). Soit $M \lhd G, N \lhd G$ et M < N.

- 1. Montrer que $M \lhd N$ et $N/M \lhd G/M$.
- 2. Montrer que

$$(G/M)/(N/M) \cong G/N$$