Série 14

Exercice 1

Les valeurs singulières non nulles de la matrice

$$A = \left[\begin{array}{rrr} 4 & 0 & -2 \\ 2 & 0 & -4 \end{array} \right]$$

sont

$$\square$$
 4 et 36 \square $\sqrt{2}$ et 2

$$\square$$
 2 et 6 \square 2 et 4

Exercice 2

Trouver la décomposition SVD de la matrice suivante

$$A := \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix}$$

Exercice 3

- (a) Soit A une matrice de taille $m \times n$. Montrer que le rang de AA^T est égal au rang de A.
- (b) Soit A une matrice de taille $m \times n$ avec m > n. Montrer que AA^T n'est pas inversible.

Exercice 4

Soit A une matrice de taille $n \times n$.

- i) Montrer que A est inversible si et seulement si A possède n valeurs singulières non nulles.
- ii) Si A est inversible et $U\Sigma V^T$ est une décomposition en valeurs singulières de A, donner une décomposition en valeurs singulières de A^{-1} .

Exercice 5

Soit A une matrice de taille $m \times n$. Et soit $A = U\Sigma V^T$ une décomposition en valeurs singulières (U est une matrice orthogonale de taille $m \times m$ et V une matrice orthogonale de taille $n \times n$). Montrer que les matrices U et V ne sont pas uniques en général mais que la matrice Σ est unique.

Trouver la décomposition SVD de la matrice suivante

$$A := \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$$

Partiellement en classe mardi

Exercice 7

Calculer les valeurs singulières de la matrice

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 2 \\ 0 & -2 \end{pmatrix}$$

Exercice 8

Calculer les valeurs singulières de la matrice

$$A = \begin{pmatrix} 0 & 1 & 2 & -1 \\ 1 & 2 & 0 & 1 \end{pmatrix}$$

Exercice 9

Calculer une SVD de la matrice suivante :

$$A = \begin{pmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{pmatrix}$$

Exercice 10

Calculer une SVD de la matrice suivante :

$$A = \begin{pmatrix} -3 & 0\\ 0 & -1 \end{pmatrix}$$

2

Soit A une matrice et soient $\mathbf{w}_1, \mathbf{w}_2$ deux vecteurs propres de la matrice $A^T A$, tels que

$$\mathbf{w}_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \ \mathbf{w}_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \ A\mathbf{w}_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \ A\mathbf{w}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

Utiliser ces informations afin de trouver des matrices U, Σ et V telles que A possède une décomposition en valeurs singulières de la forme

$$A = U\Sigma V^T$$
.

Démarche proposée (à lire si vous êtes en difficulté):

- d'abord déduisez le tailles des matrices A, U, Σ et V;
- normalisez les vecteurs \mathbf{w}_1 et \mathbf{w}_2 , on obtient \mathbf{v}_1 et \mathbf{v}_2 ;
- calculez $A\mathbf{v}_1$ et $A\mathbf{v}_2$;
- calculez les valeurs singulières et définissez Σ ;
- complétez \mathbf{v}_1 et \mathbf{v}_2 en une base de \mathbb{R}^4 et assurez vous d'obtenir une base orthonormée en utilisant la méthode de Gram-Schmidt;
- définissez V en utilisant $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$;
- normalisez $A\mathbf{v}_1$ et $A\mathbf{v}_2$ et utilisez-les pour définir U.

Exercice 12

Parmi les affirmation suivantes, lesquelles sont toujours vraies?

- 1. Soit A une matrice. Alors AA^T et A^TA ont les mêmes valeurs singulières.
- 2. Une matrice A de taille $n \times n$ est inversible si et seulement si 0 n'est pas valeur singulière de A.
- 3. Soit A une matrice carrée. Alors toutes les valeurs propres de A sont aussi des valeurs singulières de A.
- 4. Soit A une matrice et soit $A=U\Sigma V^T$ une SVD de A. Alors $V\Sigma U^T$ est une SVD de A^T .
- 5. Soit A une matrice de taille 3×3 avec valeurs singulières 1, 3 et 5. Alors le déterminant de A est 15.

Partiellement en classe jeudi (ancien examen)

Ces exercices seront fait en classe mardi et jeudi : la première heure vous travaillerez seuls, la deuxième heure je fais passer en revue les exercices.

La factorisation LU (exercice 4), n'est pas au programme en 2023. Vous pouvez à la place essayer de calculer la factorisation QR de la matrice.

Exercice 13

Pour quels nombres réels b est-il vrai que le déterminant de la matrice

$$\left(\begin{array}{ccc}
2b & 6 & 4 \\
0 & b-1 & 1 \\
-b & 2b-5 & 5
\end{array}\right)$$

est égal à 0?

- \square 0 et 1
- □ aucun
- \square 0 et -1
- \Box -1 et 1

Exercice 14

On considère l'espace vectoriel formé par les matrices de taille 3×3 de la forme $\begin{pmatrix} 0 & a & 0 \\ b & 0 & c \\ 0 & d & 0 \end{pmatrix}$

où $a, b, c, d \in \mathbb{R}$. Soit h un paramètre réel. Alors les matrices

$$\left(\begin{array}{ccc} 0 & 1 & 0 \\ h & 0 & 1 \\ 0 & h & 0 \end{array}\right), \left(\begin{array}{ccc} 0 & h & 0 \\ 4 & 0 & h \\ 0 & 4 & 0 \end{array}\right), \left(\begin{array}{ccc} 0 & 1 & 0 \\ 2 & 0 & 3h \\ 0 & 4h & 0 \end{array}\right)$$

sont linéairement indépendantes

- \square si et seulement si $h \neq 2, h \neq -2, h \neq 1/3$ et $h \neq 1/2$.
- \square si et seulement si $h \neq 1/2$ et $h \neq 1/3$.
- \square pour toute valeur réelle de h.
- \square si et seulement si $h \neq 2$ et $h \neq -2$.

Exercice 15

Soit

$$A = \left(\begin{array}{rrr} 0 & 0 & -3\\ 3 & 2 & 0\\ -1 & \frac{1}{3} & 1 \end{array}\right).$$

Si $B = A^{-1}$, alors l'élément b_{12} de B est égal à

- \Box $-\frac{2}{3}$.
- $\frac{1}{9}$.
- $\Box \qquad \frac{9}{1}$
- \Box $\frac{1}{3}$.

Soit

$$A = \left(\begin{array}{ccc} 2 & 4 & 4 \\ 1 & 3 & 1 \\ 1 & 5 & 6 \end{array}\right).$$

Si A = LU est une factorisation LU de A (L est une matrice triangulaire inférieure dont les éléments diagonaux sont égaux à 1 et U est une matrice triangulaire supérieure), alors l'élément l_{32} de L est

- 1/2.
- -3/2.
- 3/2.
- 3.

Exercice 17

Soient $A = \begin{pmatrix} 1 & 0 \\ 3 & 5 \\ 5 & 4 \end{pmatrix}$ et $\mathbf{b} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$. Alors la solution au sens des moindres carrés

 $\widehat{\mathbf{x}} = \begin{pmatrix} \widehat{x}_1 \\ \widehat{x}_2 \end{pmatrix} \text{ de l'équation } A\mathbf{x} = \mathbf{b} \text{ satisfait}$ $\square \quad \widehat{x}_2 = -35/6.$ $\square \quad \widehat{x}_2 = 41/6.$ $\square \quad \widehat{x}_2 = -5/6.$ $\square \quad \widehat{x}_2 = 1/6.$

Exercice 18

La dimension du sous-espace vectoriel de \mathbb{R}^4 donné par

$$V = \left\{ \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} \in \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 1 \end{pmatrix} \right\} \text{ tels que } v_4 = 0 \right\}$$

est

- 4.
- 3.
- 1.
- 2.

Exercice 19

Soit $T: \mathbb{P}_2 \to \mathbb{P}_3$ l'application linéaire définie par T(p(t)) = (t+1)p(t). Alors la matrice de T dans les bases $\{1, t, t^2\}$ de \mathbb{P}_2 et $\{1, t, t^2, t^3\}$ de \mathbb{P}_3 est

5

$$\Box \qquad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}. \qquad \Box \qquad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}. \\
\Box \qquad \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}. \qquad \Box \qquad \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Soient l'espace vectoriel \mathbb{R}^3 muni du produit scalaire euclidien et le sous-espace vectoriel

$$V = \operatorname{Span} \left\{ \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix} \right\}.$$

Alors, la projection orthogonale du vecteur $\begin{pmatrix} 6 \\ 21 \\ 3 \end{pmatrix}$ sur V est

- $\Box \begin{pmatrix} 4 \\ 8 \\ 7 \end{pmatrix}.$ $\Box \begin{pmatrix} 2 \\ 16 \\ 11 \end{pmatrix}.$ $\Box \begin{pmatrix} 10 \\ 26 \\ -5 \end{pmatrix}.$
- $\Box \quad \frac{1}{26} \left(\begin{array}{c} 255 \\ 396 \\ 375 \end{array} \right).$

Exercice 21

Soit un paramètre $b \in \mathbb{R}$. Alors le polynôme $q(t) = bt - t^2$ appartient au sous-espace vectoriel de \mathbb{P}_2 engendré par $p_1(t) = 1 + t + t^2$ et $p_2(t) = 2 - t + 3t^2$ lorsque

- $\square \quad b=1.$
- b = -1.
- b = -3.
- b = 3.

Exercice 22

Soient

$$A = \begin{pmatrix} 1 & 2 & 1 \\ -3 & -5 & -1 \\ -2 & -4 & -2 \end{pmatrix} \qquad \text{et} \qquad \mathbf{b} = \begin{pmatrix} -2 \\ h^3 - h \\ h^3 - 4h + 4 \end{pmatrix}$$

où $h \in \mathbb{R}$ est un paramètre. Alors l'équation matricielle

$$A\mathbf{x} = \mathbf{b}$$

possède une infinité de solutions

- \square pour h = -2, h = 0 et h = 2.
- \square pour h = -2, h = 1 et h = 2.
- \square pour h = -1, h = 0 et h = 1.
- \square pour h = -1, h = -1/2 et h = 1/2.

Exercice 23

Soit A une matrice de taille 4×5 telle que l'équation matricielle $A\mathbf{x} = \mathbf{0}$ possède exactement deux variables libres. Quelle est la dimension du sous-espace vectoriel

 $W = \left\{ \mathbf{b} \in \mathbb{R}^4 \text{ tels que } A\mathbf{x} = \mathbf{b} \text{ est compatible} \right\} ?$

- \Box 0
- \Box 1
- \square 2
- \Box 3

Exercice 24

Soient

$$A = \begin{pmatrix} -1 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 2 & 2 & 1 & -1 \\ -2 & -2 & -1 & 1 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} -1 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \\ 2 & 3 & 2 & -2 \\ -2 & -2 & -1 & 1 \end{pmatrix}.$$

Alors

- \Box dim(Ker A) = 2 et dim(Ker B) = 2.
- \square dim(Ker A) \neq 2 et dim(Ker B) \neq 2.
- \Box dim(Ker A) \neq 2 et dim(Ker B) = 2.
- \Box dim(Ker A) = 2 et dim(Ker B) \neq 2.

Exercice 25

Soit $T: \mathbb{R}^4 \to \mathbb{R}^2$ l'application linéaire définie par

$$T\left(\left(\begin{array}{c} x_1\\ x_2\\ x_3\\ x_4 \end{array}\right)\right) = \left(\begin{array}{c} 2x_1 - 3x_2\\ x_3 + x_1 + x_4 \end{array}\right).$$

Alors la matrice de T dans les bases

$$\left\{ \begin{pmatrix} 2\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\2\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\2 \end{pmatrix} \right\} \text{ et } \left\{ \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 2\\1 \end{pmatrix} \right\}$$

est

$$\Box \qquad \begin{pmatrix} 0 & 1 & 2/3 & 2/3 \\ 1 & -2 & -1/3 & -1/3 \end{pmatrix}.$$

$$\Box \qquad \begin{pmatrix} 4 & -4 & -3 & 0 \\ 2 & 1 & 2 & 3 \end{pmatrix}.$$

$$\Box \qquad \begin{pmatrix} 8 & -2 & 1 & 6 \\ 10 & -7 & -4 & 3 \end{pmatrix}.$$

$$\Box \qquad \begin{pmatrix} 0 & 2 & 7/3 & 2 \\ 2 & -3 & -8/3 & -1 \end{pmatrix}.$$

Exercice 26

Soit la matrice

$$A = \left(\begin{array}{ccc} 1 & 3 & 3 \\ 3 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right).$$

Alors les valeurs propres de A sont

- \Box -2 et 3.
- \square 3 et 4.
- \Box -5, -1 et 1.
- \Box -2 et 7.

Exercice 27

Quel énoncé est vrai pour toute matrice A de taille $n \times n$ et tout vecteur $\mathbf{b} \in \mathbb{R}^n$?

- \square L'équation $A\mathbf{x} = \mathbf{b}$ a au plus une solution.
- \square L'équation $A\mathbf{x} = \mathbf{b}$ a au moins une solution.
- \Box L'équation $A\mathbf{x} = \mathbf{b}$ a au plus une solution au sens des moindres carrés.
- \square L'équation $A\mathbf{x} = \mathbf{b}$ a au moins une solution au sens des moindres carrés.

Exercice 28

Soit $\{\mathbf{e}_1, \dots, \mathbf{e}_4\}$ la base canonique de \mathbb{R}^4 . Soit $T : \mathbb{R}^4 \to \mathbb{P}_4$ une application linéaire. Si le rang de T est égal à 4, alors l'ensemble $\{T(\mathbf{e}_1 + \mathbf{e}_2), T(2\mathbf{e}_2), T(\mathbf{e}_3 + \mathbf{e}_4), T(\mathbf{e}_4 + \mathbf{e}_1)\}$

- \square est une base de \mathbb{P}_4 .
- \square n'est pas linéairement indépendante.
- \square ne peut pas être complétée en une base de \mathbb{P}_4 .
- \square peut être complétée en une base de \mathbb{P}_4 .

Exercice 29

Soient A et B deux matrices diagonalisables de taille $n \times n$ telles que $A \neq B$. Alors

- \square AB est toujours diagonalisable.
- \square AB n'est jamais diagonalisable.
- \square AB est diagonalisable si A et B ont les mêmes valeurs propres.
- \square AB est diagonalisable si A et B ont les mêmes vecteurs propres.

Soient $m \geq 2$, A une matrice de taille $m \times (m-1)$ et $\mathbf{b} \in \mathbb{R}^m$ un vecteur non nul. Alors l'ensemble des solutions de $A\mathbf{x} = \mathbf{b}$ peut être

l'ensemble vide.

un sous-espace vectoriel de \mathbb{R}^{m-1} de dimension 1.

un sous-espace vectoriel de \mathbb{R}^{m-1} de dimension m-2.

égal à \mathbb{R}^{m-1} .

Exercice 31

Parmi les formules suivantes laquelle est toujours vraie pour tout choix de deux matrices inversibles A et B de taille $n \times n$?

 $(AB)^{-1} = A^{-1}B^{-1}$

 $\Box \quad (A + B^{T})^{-1} = A^{-1} + (B^{-1})^{T}$ $\Box \quad (2A)^{-1} = 2^{-n}A^{-1}$

 \Box $(AB^T)^{-1} = (B^{-1})^T A^{-1}$

Exercice 32

Soit A la matrice $\begin{pmatrix} -1/2 & 0 & -\sqrt{3}/2 \\ 0 & 1 & 0 \\ \sqrt{3}/2 & 0 & -1/2 \end{pmatrix}$. Parmi les affirmations

(a) $\det A = 1$ (b) $AA^T = I_3$ (c) $A^3 = I_3$

lesquelles sont vraies?

seulement (a) et (c)

seulement (b)

seulement (a) et (b)

(a), (b) et (c)

Exercice 33

Soient a, b deux nombres réels tels que a + b = 1 et $A = \begin{pmatrix} 4a & 2 \\ 2 & 4b \end{pmatrix}$ une matrice non inversible. Laquelle des affirmations suivantes doit être vraie?

le polynôme caractéristique de A a une seule racine réelle

 $\det A = -4$

A est une matrice de changement de base

le polynôme caractéristique de A a deux racines réelles distinctes

Exercice 34

Soit U une matrice de taille $n \times p$ dont les colonnes sont orthonormées et soit $W = \operatorname{Col}(U)$. Soit proj_W la projection orthogonale sur W. Alors, pour tout vecteur $\mathbf{x} \in \mathbb{R}^p$ et tout vecteur $\mathbf{y} \in \mathbb{R}^n$, on a

 $\Box \quad U^T U \mathbf{x} = \mathbf{x} \qquad \text{et} \quad U U^T \mathbf{y} = \mathbf{0}.$ $\Box \quad U^T U \mathbf{x} = \operatorname{proj}_W \mathbf{x} \quad \text{et} \quad U U^T \mathbf{y} = \operatorname{proj}_W \mathbf{y}.$

 $U^T U \mathbf{x} = \mathbf{x}$ et $U U^T \mathbf{y} = \mathbf{y}$. $U^T U \mathbf{x} = \mathbf{x}$ et $U U^T \mathbf{y} = \operatorname{proj}_W \mathbf{y}$.

et
$$UU^T\mathbf{y} = \mathbf{y}$$
.

Exercice 35

Soient les sous-ensembles de \mathbb{R}^2 suivants :

(a) $\left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$

(d) $\left\{ \begin{pmatrix} 0 \\ a^2 \end{pmatrix} \text{ tels que } a \in \mathbb{R} \right\}$

(b) $\left\{ \left(\begin{array}{c} a \\ \sin a \end{array} \right) \text{ tels que } a \in \mathbb{R} \right\}$

(e) $\left\{ \begin{pmatrix} -a/2 \\ -10a \end{pmatrix} \text{ tels que } a \in \mathbb{R} \right\}$

(c) $\left\{ \begin{pmatrix} 0 \\ a \end{pmatrix} \text{ tels que } a \in \mathbb{R} \right\}$

Lesquels sont des sous-espaces vectoriels?

- tous sauf (d)
- tous sauf (b)
- seulement (c) et (e)
- seulement (a), (c) et (e)

Exercice 36

Soient A et B deux matrices de taille $n \times n$ semblables. Quel énoncé n'est pas nécessairement vrai?

- Les polynômes caractéristiques de A et de B sont les mêmes.
- A est diagonalisable si et seulement si B est diagonalisable.
- Les rangs de A et de B sont les mêmes.
- A et B ont les mêmes sous-espaces propres.

Copyright 2012 © Prof. Assyr Abdulle, Prof. Simone Deparis, Dr. Christian Urech.

Informations générales, séries et corrigés : cf.

http://moodle.epfl.ch/course/view.php?id=15414

Les exercices de type vrai ou faux proviennent du livre : D.C. Lay. Algèbre linéaire : théorie, exercices et applications. De Boeck, Bruxelles, 2005.