Série 13 (Corrigé)

Exercice 1

On suppose que A est une matrice symétrique réelle de taille $n \times n$.

a) Montrer qu'il existe une base orthonormale $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ de \mathbb{R}^n et $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ (pas forcément distincts) tels que

$$A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T + \ldots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T.$$
 (1)

Cette expression est appelée décomposition spectrale de A.

Solution: Méthode 1: On applique le théorème spectral à la matrice symétrique réelle A. Il existe une matrice orthogonale Q et une matrice diagonale D telles que

$$A = QDQ^T$$
.

On note $Q = (\mathbf{u}_1 \dots \mathbf{u}_n)$ les colonnes de Q, et on pose $D = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$. Comme

Q est une matrice orthogonale, $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ est une base orthonormale. De plus,

$$A = QDQ^{T} = (\mathbf{u}_{1} \dots \mathbf{u}_{n}) \begin{pmatrix} \lambda_{1} & 0 \\ & \ddots & \\ 0 & \lambda_{n} \end{pmatrix} \begin{pmatrix} \mathbf{u}_{1}^{T} \\ \vdots \\ \mathbf{u}_{n}^{T} \end{pmatrix}$$
$$= (\mathbf{u}_{1} \dots \mathbf{u}_{n}) \begin{pmatrix} \lambda_{1} \mathbf{u}_{1}^{T} \\ \vdots \\ \lambda_{n} \mathbf{u}_{n}^{T} \end{pmatrix} = \lambda_{1} \mathbf{u}_{1} \mathbf{u}_{1}^{T} + \dots + \lambda_{n} \mathbf{u}_{n} \mathbf{u}_{n}^{T}.$$

Méthode 2 : Soit $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ une base orthonormale de \mathbb{R}^n donnée par le théorème spectral appliqué à A, c-à-d vérifiant $A\mathbf{u}_k = \lambda_k \mathbf{u}_k$ pour tout k, où $\lambda_1, \ldots, \lambda_n$ sont les valeurs propres de A. Pour montrer que deux matrices sont égales, il suffit de montrer que leurs produits avec tout vecteur $\mathbf{v} \in \mathbb{R}^n$ coïncident. Comme $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ est une base, tout vecteur \mathbf{v} se décompose sous la forme $\mathbf{v} = \sum_{k=1}^n \alpha_k \mathbf{u}_k$. On calcule

$$A\mathbf{v} = \sum_{k=1}^{n} \alpha_k A \mathbf{u}_k = \sum_{k=1}^{n} \alpha_k \lambda_k \mathbf{u}_k$$

et

$$\left(\sum_{l=1}^{n} \lambda_{l} \mathbf{u}_{l} \mathbf{u}_{l}^{T}\right) \mathbf{v} = \left(\sum_{l=1}^{n} \lambda_{l} \mathbf{u}_{l} \mathbf{u}_{l}^{T}\right) \sum_{k=1}^{n} \alpha_{k} \mathbf{u}_{k} = \sum_{k=1}^{n} \alpha_{k} \sum_{l=1}^{n} \lambda_{l} \mathbf{u}_{l} \mathbf{u}_{l}^{T} \mathbf{u}_{k} = \sum_{k=1}^{n} \alpha_{k} \lambda_{k} \mathbf{u}_{k},$$

où l'on a utilisé $\mathbf{u}_l^T \mathbf{u}_k = \mathbf{u}_l \cdot \mathbf{u}_k = 0$ pour $l \neq k$ et $\mathbf{u}_k \cdot \mathbf{u}_k = 1$. On obtient ainsi l'égalité des deux matrices A et $\left(\sum_{l=1}^n \lambda_l \mathbf{u}_l \mathbf{u}_l^T\right)$.

b) Calculer la décomposition spectrale et vérifier l'égalité (??) pour

i)
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, ii) $A = \begin{pmatrix} 5 & -4 & -2 \\ -4 & 5 & 2 \\ -2 & 2 & 2 \end{pmatrix}$.

Solution:

i) Les calculs ont déjà été effectués à l'exercice précédent (4,b)). Il faut en effet calculer les valeurs propres et une base orthonormale de vecteurs propres. On obtient

$$\lambda_1 = -1, \ \lambda_2 = 1, \ \lambda_3 = 1,$$
 $\mathbf{u}_1 = \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix}, \ \mathbf{u}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix}, \ \mathbf{u}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$

On vérifie explicitement l'égalité donnée par la décomposition spectrale :

$$\lambda_{1}\mathbf{u}_{1}\mathbf{u}_{1}^{T} + \lambda_{2}\mathbf{u}_{2}\mathbf{u}_{2}^{T} + \lambda_{3}\mathbf{u}_{3}\mathbf{u}_{3}^{T}$$

$$= -1 \cdot \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} & 0 \end{pmatrix} + 1 \cdot \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \end{pmatrix}$$

$$+1 \cdot \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 \end{pmatrix}$$

$$= -\begin{pmatrix} 1/2 & -1/2 & 0 \\ -1/2 & 1/2 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = A.$$

ii) On procède comme en i) et on obtient

$$\lambda_1 = 1, \ \lambda_2 = 1, \ \lambda_3 = 10,$$

$$\mathbf{u}_1 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix}, \ \mathbf{u}_2 = \begin{pmatrix} 1/(3\sqrt{2}) \\ -1/(3\sqrt{2}) \\ 4/(3\sqrt{2}) \end{pmatrix}, \ \mathbf{u}_3 = \begin{pmatrix} -2/3 \\ 2/3 \\ 1/3 \end{pmatrix}.$$

On vérifie également explicitement que

$$\lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T + \lambda_3 \mathbf{u}_3 \mathbf{u}_3^T = A.$$

Exercice 2

Soit A une matrice symétrique de taille $n \times n$.

a) Montrer que $A\mathbf{v} \cdot \mathbf{u} = \mathbf{v} \cdot A\mathbf{u}$ pour tous $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$.

Solution: En effet, $A\mathbf{v} \cdot \mathbf{u} = (A\mathbf{v})^T \mathbf{u} = \mathbf{v}^T A^T \mathbf{u} = \mathbf{v}^T A \mathbf{u} = \mathbf{v} \cdot A \mathbf{u}$.

b) Donner un contre-exemple à a) pour une matrice carrée quelconque, en trouvant une matrice B de taille 2×2 telle que $B\mathbf{v} \cdot \mathbf{u} \neq \mathbf{v} \cdot B\mathbf{u}$ en général.

Solution: Par exemple,
$$B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
. On a $B\mathbf{v} \cdot \mathbf{u} \neq \mathbf{v} \cdot B\mathbf{u}$ pour $\mathbf{u} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $\mathbf{v} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Exercice 3

Diagonaliser les matrices suivantes sous la forme $Q^TAQ=D$, avec Q une matrice orthogonale.

a)
$$A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & 1 \\ 3 & 1 & 1 \end{pmatrix}$$
,

Solution : A est une matrice symétrique réelle, elle est donc diagonalisable en base orthonormale d'après le théorème spectral. On trouve

$$D = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}, \quad Q = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{6} & -1/\sqrt{2} \\ 1/\sqrt{3} & -2/\sqrt{6} & 0 \\ 1/\sqrt{3} & 1/\sqrt{6} & 1/\sqrt{2} \end{pmatrix}.$$

b)
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

Solution : De même, A est une matrice symétrique réelle, elle est donc diagonalisable en base orthonormale d'après le théorème spectral. On trouve

$$D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad Q = \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Exercice 4

- (a) Soient A et B deux matrices de taille $n \times n$ qui sont orthodiagonalisables. Montrer que si AB = BA, alors AB est aussi orthodiagonalisable.
- (b) Donner un exemple de deux matrices A et B de taille $n \times n$ qui sont orthodiagonalisables tel que AB n'est pas orthodiagonalisable.

Solution:

(a) On sait qu'une matrice à coefficients réels est orthodiagonalisable ssi elle est symétrique. Supposons que A et B sont orthodiagonalisables et commutent (AB = BA). Alors $(AB)^T = B^TA^T = BA = AB$. Ainsi, AB est symétrique, donc orthodiagonalisable.

(b) Puisqu'une matrice à coefficients réels est orthodiagonalisable ssi elle est symétrique, il suffit de donner deux matrices symétriques A, B dont le produit n'est pas symétrique. Les matrices suivantes conviennent :

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} ; B = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

Exercice 5

a) Montrer que si Q est une matrice orthogonale, alors Q^T est aussi une matrice orthogonale.

Solution: Par définition, une matrice orthogonale Q de taille $n \times n$ vérifie $Q^TQ = I_n$ et $QQ^T = I_n$. Comme $Q = (Q^T)^T$, on a $Q^T(Q^T)^T = I_n$ et $(Q^T)^TQ^T = I_n$, ce qui montre que Q^T est aussi orthogonale.

b) Montrer que si U,V sont des matrices $n\times n$ orthogonales, alors UV est aussi une matrice orthogonale.

Solution : En utilisant $VV^T = UU^T = I_n$, on a $UV(UV)^T = UVV^TU^T = UU^T = I_n$. De même, on peut vérifier que $(UV)^TUV = I_n$, donc UV est une matrice orthogonale.

c) Soit **u** un vecteur unitaire de \mathbb{R}^n ($\|\mathbf{u}\| = 1$). Montrer que la matrice $Q = I_n - 2\mathbf{u}\mathbf{u}^T$ est orthogonale.

Solution: On doit montrer $Q^TQ = I_n$.

Méthode 1 : En travaillant avec des indices, on a

$$(Q^{T}Q)_{ij} = \sum_{k=1}^{n} q_{ki}q_{kj} = \sum_{k=1}^{n} (\delta_{ki} - 2u_{k}u_{i}) (\delta_{kj} - 2u_{k}u_{j})$$
$$= \delta_{ij} + \sum_{k=1}^{n} (-\delta_{ki}2u_{k}u_{j} - 2\delta_{kj}u_{k}u_{i} + 4u_{i}u_{j}u_{k}^{2}),$$

avec $\delta_{ij} = 1$ si i = j, $\delta_{ij} = 0$ sinon. En utilisant $\sum_{k=1}^{n} u_k^2 = 1$, on obtient $Q^T Q = I_n$. **Méthode 2**: On calcule matriciellement : $Q^T = (I_n - 2\mathbf{u}\mathbf{u}^T)^T = I_n - 2(\mathbf{u}^T)^T\mathbf{u}^T = Q$, ensuite,

$$Q^{T}Q = (I_{n} - 2\mathbf{u}\mathbf{u}^{T})(I_{n} - 2\mathbf{u}\mathbf{u}^{T}) = I_{n} - 2\mathbf{u}\mathbf{u}^{T} - 2\mathbf{u}\mathbf{u}^{T} + 4\mathbf{u}(\mathbf{u}^{T}\mathbf{u})\mathbf{u}^{T} = I_{n} - 4\mathbf{u}\mathbf{u}^{T} + 4\mathbf{u}\mathbf{u}^{T} = I_{n},$$
où l'on a utilisé $\mathbf{u}^{T}\mathbf{u} = \|\mathbf{u}\|^{2} = 1.$

Remarque : de telles matrices orthogonales s'appellent réflexions de Householder.

- d) Montrer que toute valeur propre réelle λ d'une matrice orthogonale Q vérifie $\lambda = \pm 1$. **Solution :** La matrice orthogonale conserve la norme de tout vecteur $\mathbf{x} : \|Q\mathbf{x}\|^2 = (Q\mathbf{x})^T(Q\mathbf{x}) = \mathbf{x}^TQ^TQ\mathbf{x} = \mathbf{x}^T\mathbf{x} = \|\mathbf{x}\|^2$. Ensuite, si $\mathbf{x} \neq \mathbf{0}$ est un vecteur propre associé à λ , on a $\|\mathbf{x}\| = \|Q\mathbf{x}\| = \|\lambda\mathbf{x}\| = |\lambda| \|\mathbf{x}\|$. Comme $\|\mathbf{x}\| \neq 0$, on obtient $|\lambda| = 1$, ainsi $\lambda = \pm 1$.
- e) Soit Q une matrice orthogonale de taille $n \times n$. Soit $\{\mathbf{u}_1, ..., \mathbf{u}_n\}$ une base orthogonale de \mathbb{R}^n . Montrer que $\{Q\mathbf{u}_1, ..., Q\mathbf{u}_n\}$ est aussi une base orthogonale de \mathbb{R}^n .

Solution: On calcule pour tous i, j:

$$Q\mathbf{u}_i \cdot Q\mathbf{u}_j = (Q\mathbf{u}_i)^T Q\mathbf{u}_j = \mathbf{u}_i^T Q^T Q\mathbf{u}_j = \mathbf{u}_i^T \mathbf{u}_j = \mathbf{u}_i \cdot \mathbf{u}_j.$$

Comme les \mathbf{u}_i sont orthogonaux entre eux, ceci montre que la famille $\{Q\mathbf{u}_1, ..., Q\mathbf{u}_n\}$ est orthogonale et constituée de vecteurs non nuls (de normes $\|Q\mathbf{u}_i\| = \|\mathbf{u}_i\|$).

Il reste à montrer que $\{Q\mathbf{u}_1,...,Q\mathbf{u}_n\}$ est une base.

Méthode 1 : Comme Q est inversible (d'inverse Q^T), Q transforme les bases en bases, donc $\{Q\mathbf{u}_1, ..., Q\mathbf{u}_n\}$ est une base.

Méthode 2 : Comme la famille $\{Q\mathbf{u}_1, ..., Q\mathbf{u}_n\}$ est orthogonale et constituée de vecteurs non nuls, elle est automatiquement linéairement indépendante. Comme elle comporte n vecteurs, c'est une base de \mathbb{R}^n .

Remarque : si $\{\mathbf{u}_1, ..., \mathbf{u}_n\}$ est une base orthonormée, alors $||Q\mathbf{u}_i|| = 1$, et $\{Q\mathbf{u}_1, ..., Q\mathbf{u}_n\}$ est aussi une base orthonormée.

Exercice 6

Est-ce que l'affirmation suivante est vraie ou fausse : Soit A une matrice de dimension $m \times n$ dont les lignes sont linéairement indépendantes. Alors la matrice AA^T n'est pas inversible. **Solution :** Faux. Ils nous suffit de trouver un contre-exemple. Soit A une matrice de taille 3×2

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 1 \end{array}\right).$$

Alors

$$AA^T = \left(\begin{array}{cc} 14 & 11\\ 11 & 14 \end{array}\right)$$

qui est inversible.

En général on peut montrer que cette expression est toujours fausse, c-à-d AA^T est toujours inversible si A a m lignes linéairement indépendantes.

Méthode 1 Soit $A = U\Sigma V^T$ la décomposition à valeurs singulières de A et

$$A^T = (U\Sigma V^T)^T = (V^T)^T \Sigma^T U^T = V\Sigma^T U^T$$

sa transposée, où Σ est une matrice de taille $m \times n$ avec m valeurs singuliérs $\sigma_1, \sigma_2, \ldots, \sigma_m$ non nuls car les m lignes de A sont linéairement indépendantes $(m \le n)$. Donc

$$AA^T = U\Sigma V^T V\Sigma^T U^T = U\Sigma \Sigma^T U^T.$$

où nous avons utilisé le fait que V est une matrice orthogonale, c-à-d $VV^T = I$. On peut remarquer que $\Sigma\Sigma^T$ est une matrice diagonale de taille $m \times m$. Les elements diagonaux sont les carrés des valeurs singuliers de Σ . Etant $\sigma_1^2, \sigma_2^2, \ldots, \sigma_m^2$ tous non nuls, AA^T est inversible.

Méthode 2 Si les m lignes de A sont linéairement indépendantes alors $\operatorname{rg}(A) = m$. Par le cours, on sait que $\operatorname{rg}(A) = \operatorname{rg}(A^T)$. Or, par le théorème du rang, on a que $\dim(\operatorname{Ker}(A^T)) = m - \operatorname{rg}(A^T) = 0$. Cela implique que $\dim(\operatorname{Ker}(AA^T)) = 0$ et, par le théorème du rang, on peut dire que $\operatorname{rg}(AA^T) = m$, qui équivaut à dire que AA^T est inversible.

Exercice 7

Si A est une matrice symétrique inversible, alors A^{-1} est aussi une matrice symétrique. **Solution**: Vrai.

Partiellement en classe (Ces exercices seront sur les slides.)

Copyright 2012 © Prof. Assyr Abdulle, Prof. Simone Deparis, Dr. Christian Urech. Informations générales, séries et corrigés : cf.

http://moodle.epfl.ch/course/view.php?id=15414

Les exercices de type vrai ou faux proviennent du livre : D.C. Lay. Algèbre linéaire : théorie, exercices et applications. De Boeck, Bruxelles, 2005.