Série 12 (Corrigé)

Exercice 1

Soient les vecteurs

$$\mathbf{v} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{w}_1 = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}, \quad \mathbf{w}_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}.$$

a) Trouver la meilleure approximation de \mathbf{v} par un vecteur de la forme $\alpha \mathbf{w}_1 + \beta \mathbf{w}_2$.

Solution: Soit $W = \text{Span}\{\mathbf{w}_1, \mathbf{w}_2\}$. La meilleure approximation $\mathbf{w} = \alpha \mathbf{w}_1 + \beta \mathbf{w}_2$ de \mathbf{v} correspond à la projection orthogonale $\mathbf{p}_W(\mathbf{v})$. Attention, ici \mathbf{w}_1 et \mathbf{w}_2 ne sont pas orthogonaux ($\mathbf{w}_1 \cdot \mathbf{w}_2 \neq 0$).

Méthode 1: La projection orthogonale est déterminée par $\mathbf{w} \in W$ et $\mathbf{v} - \mathbf{w} \in W^{\perp}$:

$$\begin{cases} (\mathbf{w} - \mathbf{v}) \cdot \mathbf{w}_1 = 0 \\ (\mathbf{w} - \mathbf{v}) \cdot \mathbf{w}_2 = 0 \end{cases} \Leftrightarrow \begin{cases} \alpha \mathbf{w}_1 \cdot \mathbf{w}_1 + \beta \mathbf{w}_2 \cdot \mathbf{w}_1 = \mathbf{v} \cdot \mathbf{w}_1 \\ \alpha \mathbf{w}_1 \cdot \mathbf{w}_2 + \beta \mathbf{w}_2 \cdot \mathbf{w}_2 = \mathbf{v} \cdot \mathbf{w}_2 \end{cases} \Leftrightarrow \begin{cases} 8\alpha + 6\beta = 4 \\ 6\alpha + 6\beta = 5 \end{cases}.$$

La solution est $\alpha = -1/2$, $\beta = 4/3$. Par conséquent, $\mathbf{w} = -\frac{1}{2}\mathbf{w}_1 + \frac{4}{3}\mathbf{w}_2 = \begin{pmatrix} 4/3\\1/3\\5/3 \end{pmatrix}$.

Méthode 2 : Soit $A = \begin{pmatrix} 0 & 1 \\ 2 & 1 \\ 2 & 2 \end{pmatrix}$. On doit trouver la meilleure approximation de \mathbf{v}

sous la forme $A\mathbf{x}$, où $\mathbf{x} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$. L'équation normale pour la solution au sens des $moindres \ carr\'es \ de \ A\mathbf{x} = \mathbf{v} \ \acute{est}$

$$A^{T}A\mathbf{x} = A^{T}\mathbf{v} \Leftrightarrow \begin{cases} 8\alpha + 6\beta = 4\\ 6\alpha + 6\beta = 5 \end{cases}$$
.

On conclut comme dans la méthode 1.

Méthode 3 : On applique la méthode de Gram-Schmidt pour orthogonaliser la famille

$$\begin{aligned} &\{\mathbf{w}_1,\mathbf{w}_2\}.\ \textit{On pose}\ \mathbf{u}_1 = \mathbf{w}_1 = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} \textit{et}\ \mathbf{u}_2 = \mathbf{w}_2 - \frac{\mathbf{w}_2 \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 = \begin{pmatrix} 1 \\ -1/2 \\ 1/2 \end{pmatrix}.\ \textit{La famille} \\ &\{\mathbf{u}_1,\mathbf{u}_2\} \textit{ forme alors une base orthogonale de W. On a ainsi } \mathbf{p}_W(\mathbf{v}) = \frac{\mathbf{v} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \begin{pmatrix} \mathbf{v} \cdot \mathbf{u}_1 \cdot \mathbf{u}_1 \\ \mathbf{v} \cdot \mathbf{v}_1 \cdot \mathbf{v}_2 \end{pmatrix}. \end{aligned}$$

$$\{\mathbf{u}_1, \mathbf{u}_2\}$$
 forme alors une base orthogonale de W . On a ainsi $\mathbf{p}_W(\mathbf{v}) = \frac{\mathbf{v} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{v} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = \begin{pmatrix} 4/3 \\ 1/3 \\ 5/3 \end{pmatrix}$. Puisque \mathbf{w}_1 et \mathbf{w}_2 ne sont pas orthogonaux, cette méthode ne

permet pas directement de trouver les coefficients α et β , il faut résoudre le système supplémentaire $A\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \mathbf{p}_W(\mathbf{v})$. On retrouve le même résultat.

b) Calculer la distance entre \mathbf{v} et Span $\{\mathbf{w}_1, \mathbf{w}_2\}$.

Solution:
$$\|\mathbf{v} - \mathbf{p}_W(\mathbf{v})\| = \left\| \begin{pmatrix} 2/3 \\ 2/3 \\ -2/3 \end{pmatrix} \right\| = \frac{2}{\sqrt{3}}.$$

Soient maintenant les vecteurs

$$\mathbf{v} = \begin{pmatrix} 2 \\ 4 \\ 0 \\ -1 \end{pmatrix}, \quad \mathbf{w}_1 = \begin{pmatrix} 2 \\ 0 \\ -1 \\ -3 \end{pmatrix}, \quad \mathbf{w}_2 = \begin{pmatrix} 5 \\ -2 \\ 4 \\ 2 \end{pmatrix}.$$

c) Trouver la meilleure approximation de \mathbf{v} par un vecteur de la forme $\alpha \mathbf{w}_1 + \beta \mathbf{w}_2$.

Solution: On pose à nouveau $W = \operatorname{Span}\{\mathbf{w}_1, \mathbf{w}_2\}$. On remarque que les vecteurs \mathbf{w}_1 et \mathbf{w}_2 sont orthogonaux. On peut ainsi facilement calculer la projection orthogonale.

$$\mathbf{p}_W(\mathbf{v}) = \begin{pmatrix} 1 \\ 0 \\ -1/2 \\ -3/2 \end{pmatrix}. Puisque les vecteurs \mathbf{w}_1 et \mathbf{w}_2 sont ici orthogonaux, le calcul$$

de la projection orthogonale fournit directement les coefficients α et β . On trouve $\alpha = 1/2$ et $\beta = 0$.

d) Calculer la distance entre \mathbf{v} et Span $\{\mathbf{w}_1, \mathbf{w}_2\}$.

Solution:
$$\|\mathbf{v} - \mathbf{p}_W(\mathbf{v})\| = \sqrt{\frac{35}{2}}$$
.

Exercice 2

Calculer la décomposition QR des matrices suivantes.

a)
$$A = \begin{pmatrix} 2 & 3 \\ 2 & 4 \\ 1 & 1 \end{pmatrix},$$

Solution : On applique la méthode de Gram-Schmidt aux vecteurs $\mathbf{w}_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ et

$$\mathbf{w}_2 = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$$
, puis on les normalise. On obtient $\mathbf{u}_1 = \begin{pmatrix} 2/3 \\ 2/3 \\ 1/3 \end{pmatrix}$ et $\mathbf{u}_2 = \begin{pmatrix} -1/3 \\ 2/3 \\ -2/3 \end{pmatrix}$,

$$d'où Q = \begin{pmatrix} 2/3 & -1/3 \\ 2/3 & 2/3 \\ 1/3 & -2/3 \end{pmatrix}, \ et \ R = Q^T A = \begin{pmatrix} 3 & 5 \\ 0 & 1 \end{pmatrix}.$$

b)
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 2 & -1 \end{pmatrix}$$
,

Solution:
$$Q = \begin{pmatrix} 1/\sqrt{3} & -2/\sqrt{6} & 0 \\ 1/\sqrt{3} & 1/\sqrt{6} & 1/\sqrt{2} \\ 1/\sqrt{3} & 1/\sqrt{6} & -1/\sqrt{2} \end{pmatrix}$$
, $R = \begin{pmatrix} \sqrt{3} & 5/\sqrt{3} & -1/\sqrt{3} \\ 0 & \sqrt{6}/3 & \sqrt{6}/3 \\ 0 & 0 & \sqrt{2} \end{pmatrix}$.

c)
$$A = \begin{pmatrix} 0 & 0 \\ 1 & 2 \\ 0 & -1 \\ -1 & 1 \end{pmatrix}$$
.

Solution:
$$Q = \begin{pmatrix} 0 & 0 \\ 1/\sqrt{2} & 3/\sqrt{22} \\ 0 & -2/\sqrt{22} \\ -1/\sqrt{2} & 3/\sqrt{22} \end{pmatrix}$$
, $R = \begin{pmatrix} \sqrt{2} & 1/\sqrt{2} \\ 0 & \sqrt{11/2} \end{pmatrix}$.

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) Soit A une matrice $n \times n$ qui peut se factoriser selon la factorisation QR comme A = QR. Alors, $Q^TA = R$.
- b) Soit W un sous-espace vectoriel de \mathbb{R}^n . Soit $\hat{\mathbf{y}}$ la projection orthogonale de $\mathbf{y} \in \mathbb{R}^n$ sur W. Alors $\hat{\mathbf{y}}$ dépend du choix de la base de W.
- c) Soit W un sous-espace vectoriel de \mathbb{R}^n , $n \geq 2$, tel que $W = \text{Span}\{\mathbf{w}_1, \mathbf{w}_2\}$. Si $\mathbf{z} \in \mathbb{R}^n$ satisfait $\mathbf{z} \perp \mathbf{w}_1$ et $\mathbf{z} \perp \mathbf{w}_2$, alors $\mathbf{z} \in W^{\perp}$.
- d) Soit W un sous-espace vectoriel de \mathbb{R}^n . Si $\mathbf{y} \in W$, alors sa projection orthogonale sur W est $\mathbf{p}_W(\mathbf{y}) = \mathbf{y}$.

Solution : Vrai : a) Forcément vu que $Q^T = Q^{-1}$, c) Oui, suffit d'écrire un élément de W comme combinaison linéaire de w_1 et w_2 , d) Oui, un projecteur est l'identité quand on le restreint à l'espace en question. Faux : b) Il ne dépend que de W.

Exercice 4

Soit V une espace euclidien. On note $\langle \mathbf{u}, \mathbf{v} \rangle$ le produit scalaire de deux vecteurs $\mathbf{u}, \mathbf{v} \in V$ et la norme associée est $\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$.

Montrer:

- a) Si $\{\mathbf{u}, \mathbf{v}\}$ est une famille orthonormale, alors $\|\mathbf{u} \mathbf{v}\| = \sqrt{2}$. **Solution**: $\|\mathbf{u} - \mathbf{v}\|^2 = \langle (\mathbf{u} - \mathbf{v}), (\mathbf{u} - \mathbf{v}) \rangle = \langle \mathbf{u}, \mathbf{u} \rangle - 2\langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle = \|\mathbf{u}\|^2 - 2\langle \mathbf{u}, \mathbf{v} \rangle + \|\mathbf{v}\|^2 = 1 - 0 + 1 = 2$, $donc \|\mathbf{u} - \mathbf{v}\| = \sqrt{2}$.
- b) $\langle \mathbf{u}, \mathbf{v} \rangle = \frac{1}{4} \left(\|\mathbf{u} + \mathbf{v}\|^2 \|\mathbf{u} \mathbf{v}\|^2 \right)$ pour tous $\mathbf{u}, \mathbf{v} \in V$. **Solution**: $\|\mathbf{u} + \mathbf{v}\|^2 - \|\mathbf{u} - \mathbf{v}\|^2 = \langle (\mathbf{u} + \mathbf{v}), (\mathbf{u} + \mathbf{v}) \rangle - \langle (\mathbf{u} - \mathbf{v}), (\mathbf{u} - \mathbf{v}) \rangle = \langle \mathbf{u}, \mathbf{u} \rangle + 2\langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle - \langle \mathbf{u}, \mathbf{u} \rangle + 2\langle \mathbf{u}, \mathbf{v} \rangle - \langle \mathbf{v}, \mathbf{v} \rangle = 4\langle \mathbf{u}, \mathbf{v} \rangle.$

c) $\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2(\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2)$ pour tous $\mathbf{u}, \mathbf{v} \in V$. **Solution**: $\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = \langle (\mathbf{u} + \mathbf{v}), (\mathbf{u} + \mathbf{v}) \rangle + \langle (\mathbf{u} - \mathbf{v}), (\mathbf{u} - \mathbf{v}) \rangle = \langle \mathbf{u}, \mathbf{u} \rangle + 2\langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{u} \rangle - 2\langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle = 2\langle \mathbf{u}, \mathbf{u} \rangle + 2\langle \mathbf{v}, \mathbf{v} \rangle = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$. Remarque: l'éqalité c) s'appelle "identité du parallélogramme".

Exercice 5

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) L'ensemble des solutions au sens des moindres carrés de $A\mathbf{x} = \mathbf{b}$ coïncide avec l'ensemble non vide des solutions de l'équation normale $A^T A\mathbf{x} = A^T \mathbf{b}$.
- b) Soit A une matrice $m \times n$ et $\mathbf{b} \in \mathbb{R}^m$. Le problème général des moindres carrés consiste à trouver un $\mathbf{x} \in \mathbb{R}^n$ qui rend $A\mathbf{x}$ aussi proche que possible de \mathbf{b} .
- c) Soit V un espace euclidien et soit (\mathbf{u}, \mathbf{v}) le produit scalaire de deux vecteurs $\mathbf{u}, \mathbf{v} \in V$. Alors $(\mathbf{u}\mathbf{v}, \mathbf{w}) = (\mathbf{u}, \mathbf{w}) \cdot (\mathbf{v}, \mathbf{w})$ pour tous $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$.
- d) L'espace \mathbb{R}^n muni du produit scalaire classique est un espace euclidien.

Solution : Vrai : a) Revoir la définition, b) Idem, d) Idem. Faux : c) Le sens du membre de gauche de l'égalité n'est même pas clair.

Exercice 6

Répondez par vrai ou faux, en justifiant brièvement votre réponse : Le point $\mathbf{x} = \begin{bmatrix} -16 \\ 12 \\ 0 \end{bmatrix}$ est

le point le plus proche de $\mathbf{y} = \begin{bmatrix} 5 \\ 10 \\ 0 \end{bmatrix}$ dans le sous-espace engendré par $\mathbf{u} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ et $\mathbf{v} = \begin{bmatrix} -8 \\ 6 \\ 5 \end{bmatrix}$.

Solution : Faux. On cherche α , β solutions de :

$$\begin{pmatrix} 0 & -8 \\ 0 & 6 \\ 1 & 5 \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 5 \\ 10 \\ 0 \end{pmatrix}$$

aux sens des moindres carrés. L'équation normale donne :

$$\left(\begin{array}{cc} 1 & 5 \\ 5 & 125 \end{array}\right) \cdot \left(\begin{array}{c} \alpha \\ \beta \end{array}\right) = \left(\begin{array}{c} 0 \\ 20 \end{array}\right)$$

L'unique solution est $(\alpha, \beta) = (-1, 0.2)$; donc le point le plus proche le plus proche de \mathbf{y} dans le sous-espace engendré par \mathbf{u}, \mathbf{v} est $\begin{pmatrix} -1.6\\1.2\\0 \end{pmatrix}$

Exercices supplémentaires

Exercice 7

Soit U un sous-espace vectoriel de \mathbb{R}^n et $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ une base orthogonale de U. On considère la transformation $\mathbf{T} : \mathbb{R}^n \to \mathbb{R}^n$ définie par $\mathbf{T}(\mathbf{v}) = \mathbf{p}_U(\mathbf{v})$. Montrer que \mathbf{T} est une transformation linéaire.

Solution: Méthode 1:

$$\mathbf{T}(\alpha \mathbf{v} + \beta \mathbf{w}) = \frac{(\alpha \mathbf{v} + \beta \mathbf{w}) \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{(\alpha \mathbf{v} + \beta \mathbf{w}) \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$

$$= \alpha \frac{\mathbf{v} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \beta \frac{\mathbf{w} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \alpha \frac{\mathbf{v} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p + \beta \frac{\mathbf{w} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p = \alpha \mathbf{T}(\mathbf{v}) + \beta \mathbf{T}(\mathbf{w}).$$

Méthode 2 : En utilisant l'identité $\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y} = \mathbf{y}^T \mathbf{x}$, on a

$$\begin{aligned} \mathbf{T}(\mathbf{v}) &= \frac{\mathbf{v} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \ldots + \frac{\mathbf{v} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p = \mathbf{u}_1 \mathbf{u}_1^T (\mathbf{u}_1^T \mathbf{u}_1)^{-1} \mathbf{v} + \ldots + \mathbf{u}_p \mathbf{u}_p^T (\mathbf{u}_p^T \mathbf{u}_p)^{-1} \mathbf{v} \\ &= \left(\mathbf{u}_1 \mathbf{u}_1^T (\mathbf{u}_1^T \mathbf{u}_1)^{-1} + \ldots + \mathbf{u}_p \mathbf{u}_p^T (\mathbf{u}_p^T \mathbf{u}_p)^{-1} \right) \mathbf{v}. \end{aligned}$$

Ainsi, la transformation \mathbf{T} est associée à la matrice de taille $n \times n$ définie par $\mathbf{u}_1 \mathbf{u}_1^T (\mathbf{u}_1^T \mathbf{u}_1)^{-1} + \dots + \mathbf{u}_p \mathbf{u}_p^T (\mathbf{u}_p^T \mathbf{u}_p)^{-1}$ et est donc linéaire.

Exercice 8

Les données suivantes décrivent le potentiel dans un câble électrique en fonction de la température du câble.

i	$T_i \ [^{\circ}C]$	U_i [V]
1	0	-2
2	5	-1
3	10	0
4	15	1
5	20	2
6	25	4

On suppose que le potentiel suit la loi $U = a + bT + cT^2$. Calculer a, b, c au sens des moindres carrés.

Solution: Le système linéaire s'écrit

$$\mathbf{U} = A \begin{pmatrix} a \\ b \\ c \end{pmatrix},$$

5

$$avec \ \mathbf{U} = \begin{pmatrix} U_1 \\ \vdots \\ U_6 \end{pmatrix} \ et \ A \ est \ donn\'ee \ par$$

$$A = \begin{pmatrix} 1 & T_1 & T_1^2 \\ 1 & \vdots & \vdots \\ 1 & & & \\ 1 & & & \\ 1 & \vdots & \vdots \\ 1 & T_6 & T_6^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 5 & 25 \\ 1 & 10 & 100 \\ 1 & 15 & 225 \\ 1 & 20 & 400 \\ 1 & 25 & 625 \end{pmatrix}.$$

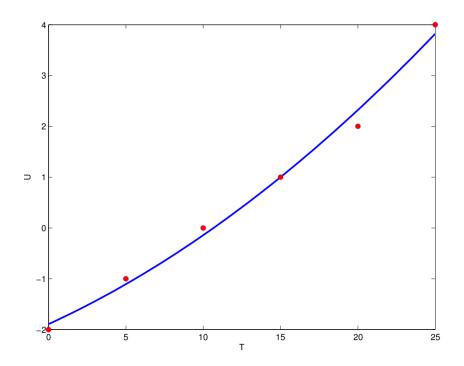
Pour résoudre ce système et trouver a,b,c au sens des moindres carrés, on considère l'équation normale

$$A^T \mathbf{U} = A^T A \left(\begin{array}{c} a \\ b \\ c \end{array} \right).$$

On trouve

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} \frac{-53}{\frac{28}{39}} \\ \frac{1}{280} \\ \frac{1}{280} \end{pmatrix} \approx \begin{pmatrix} -1.89 \\ 0.139 \\ 0.00357 \end{pmatrix}.$$

Le graphique suivant montre les données (en rouge) et la courbe d'interpolation (bleue) obtenue au sens des moindres carrés.



Exercice 9

Soit $W_1, W_2 \subset \mathbb{R}^n$ deux sous-espaces vectoriels. Montrer que

(a)
$$(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$$
;

(b)
$$W_1 = (W_1^{\perp})^{\perp}$$
;

(c) $W_1 \subset W_2$ implique $W_2^{\perp} \subset W_1^{\perp}$.

Solution:

(a) Soit $\mathbf{x} \in (W_1 + W_2)^{\perp}$ alors

$$\mathbf{x} \cdot (\mathbf{w}_1 + \mathbf{w}_2) = \mathbf{0}$$

pour tous $\mathbf{w}_1 \in W_1$ et $\mathbf{w}_2 \in W_2$. Si on prend $\mathbf{w}_1 = \mathbf{0}$ alors on a que $\mathbf{x} \cdot \mathbf{w}_2 = 0$ pour tous $\mathbf{w}_2 \in W_2$. Cela signifie que $\mathbf{x} \in W_2^{\perp}$. De façon similaire, on a que $\mathbf{x} \in W_1^{\perp}$. On a donc montré que

$$(W_1 + W_2)^{\perp} \subset W_1^{\perp} \cap W_2^{\perp}.$$

Pour montrer l'égalité, iI nous suffit de montrer que si $x \in W_1^{\perp} \cap W_2^{\perp}$ alors $x \in (W_1 + W_2)^{\perp}$ aussi. En effet, pour tous $x \in W_1^{\perp} \cap W_2^{\perp}$ on a

$$\mathbf{x} \cdot \mathbf{w}_1 = \mathbf{0} = \mathbf{x} \cdot \mathbf{w}_2$$

pour tous $\mathbf{w}_1 \in W_1$ et $\mathbf{w}_2 \in W_2$. Alors, par linéarité, on a

$$\mathbf{x} \cdot (\mathbf{w}_1 + \mathbf{w}_2) = \mathbf{x} \cdot \mathbf{w}_1 + \mathbf{x} \cdot \mathbf{w}_2 = \mathbf{0} + \mathbf{0} = \mathbf{0}.$$

Finalement, cela signifie que

$$W_1^{\perp} \cap W_2^{\perp} \subset (W_1 + W_2)^{\perp}.$$

(b) Pour tous $\mathbf{x} \in W_1$, par définition, on a que \mathbf{x} est orthogonal à tous les éléments dans W_1^{\perp} , c-à-d

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{0}$$

pour tous y dans W_1^{\perp} . Mais cela signifie que $\mathbf{x} \in (W_1^{\perp})^{\perp}$. On a donc montré que

$$W_1 \subset (W_1^{\perp})^{\perp}$$
.

De façon similaire, on peut montrer que $(W_1^{\perp})^{\perp} \subset W_1$. En effet, vu que $\dim(W_1) + \dim(W_1^{\perp}) = n$ et aussi $\dim(W_1)^{\perp} + \dim(W_1^{\perp})^{\perp} = n$, on peut donc écrire

$$\dim(W_1) = \dim(W_1^{\perp})^{\perp}.$$

Finalement, $W_1 = (W_1^{\perp})^{\perp}$.

(c) Pour tous $\mathbf{x} \in W_2^{\perp}$ on a que \mathbf{x} est orthogonal à tous les vecteurs de W_2 , c-à-d

$$\mathbf{x} \cdot \mathbf{w}_2 = \mathbf{0}$$

pour tous $\mathbf{w}_2 \in W_2$. Vu que W_1 est un sous espace de W_2 , alors \mathbf{x} est aussi orthogonal à tous les vecteurs de W_1 , c-à-d

$$\mathbf{x} \cdot \mathbf{w}_1 = \mathbf{0}$$

pour tous $\mathbf{w}_1 \in W_1$. Cela signifie que $\mathbf{x} \in W_1^{\perp}$ et donc $W_2^{\perp} \subset W_1^{\perp}$.

i) Soit $\{u_1, ..., u_n\}$ une base orthonormée de \mathbb{R}^n et v un vecteur dans \mathbb{R}^n . Montrer

$$||v||^2 = |v \cdot u_1|^2 + \dots + |v \cdot u_n|^2$$
.

Solution : Soit U la matrice orthogonale formée des colonnes u_i . En utilisant $UU^T = I$, on obtient

$$\|v\|^2 = \langle v, v \rangle = \left\langle v, UU^T v \right\rangle = \left\langle U^T v, U^T v \right\rangle = \left\| U^T v \right\|^2 = \left\| \begin{pmatrix} u_1 \cdot v \\ \vdots \\ u_n \cdot v \end{pmatrix} \right\|^2 = \sum_{i=1}^n |u_i \cdot v|^2.$$

ii) (Inégalité de Bessel) Soit $\{u_1, ..., u_p\}$ une famille orthonormée dans \mathbb{R}^n et soit v un vecteur de \mathbb{R}^n . Montrer

$$||v||^2 \ge |v \cdot u_1|^2 + \dots + |v \cdot u_p|^2$$
.

Solution: On considère la projection $w = \sum_{i=1}^{p} \langle u_i, v \rangle u_i$ de v sur $W = \text{span}\{u_1, ..., u_p\}$. On a la décomposition v = w + z, avec $z \in W^{\perp}$. Par le théorème de Pythagore, w et z étant orthogonaux, on obtient

$$||v||^2 = ||w||^2 + ||z||^2.$$

(En effet, on a $||v||^2 = \langle w+z, w+z \rangle = ||w||^2 + ||z||^2 + 2 \langle w, z \rangle$ et $\langle w, z \rangle = 0$). Ensuite,

$$||v||^2 \ge ||w||^2 = \sum_{i=1}^p ||\langle u_i, v \rangle u_i||^2 = \sum_{i=1}^p |\langle u_i, v \rangle|^2 ||u_i||^2 = \sum_{i=1}^p |\langle u_i, v \rangle|^2.$$

Partiellement en classe

Exercice 11

Soient $u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $u_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $v = \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix}$. Soit $W = \text{Vect}\{u_1, u_2\}$. Calculer la décomposition $v = z + p_W(v)$, où $z \in W^{\perp}$.

Exercice 12

Soient
$$v = \begin{pmatrix} 0 \\ 9 \\ 0 \\ -18 \end{pmatrix}$$
 et $W = \text{Vect} \left\{ \begin{pmatrix} 2 \\ -2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 4 \\ -4 \\ 6 \\ 2 \end{pmatrix} \right\}.$

Alors, le projeté orthogonal (par rapport au produit scalaire euclidien) de v sur W est

$$[A.] \begin{pmatrix} -3\\3\\4\\-1 \end{pmatrix} \qquad [B.] \begin{pmatrix} -12\\12\\-6\\-6 \end{pmatrix} \qquad [C.] \begin{pmatrix} 8\\1\\0\\-14 \end{pmatrix} \qquad [D.] \begin{pmatrix} -8\\8\\0\\-4 \end{pmatrix}$$

Exercice 13

Calculer la droite qui approxime le mieux au sens des moindres carrés les points (-1,3), (1,0), (0,3). Par où passe cette droite en x = -1, 1 et 0?

Exercice 14

Soient
$$A = \begin{pmatrix} 1 & 0 \\ 3 & 5 \\ 5 & 4 \end{pmatrix}$$
 et $b = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$. Alors la solution au sens des moindres carrés $\hat{x} = \begin{pmatrix} \hat{x}_1 \\ \hat{x}_2 \end{pmatrix}$ de l'équation $Ax = b$ satisfait [A.] $\hat{x}_2 = 1/6$ [B.] $\hat{x}_2 = -35/6$ [C.] $\hat{x}_2 = 41/6$ [D.] $\hat{x}_2 = -5/6$

Exercice 15

Quelle affirmation est vraie pour toute matrice A de taille $n \times n$ et tout vecteur $b \in \mathbb{R}^n$?

- A. L'équation Ax = b a au plus une solution
- B. L'équation Ax = b a au plus une solution au sens des moindres carrées
- C. L'équation Ax = b a au moins une solution.
- D. L'équation Ax = b a au moins une solution au sens des moindres carrées.

Exercice 16

Soit u_1, \ldots, u_p une base orthonormée d'un sous-espace $W \subset \mathbb{R}^n$ et $y \in \mathbb{R}^n$ et soit U la matrice $n \times p$ dont les colonnes sont les vecteurs u_1, \ldots, u_p . Montrer que $p_W(y) = UU^Ty$.

9

Soient A une matrice de taille $m \times n$ et $b \in \mathbb{R}^m$. Soit $c = \operatorname{proj}_{\operatorname{Col}(A)}(b)$. Alors, il es toujours vrai que

- A. la solution au sens des moindres carrés de l'équation Ax = b est $A^{-1}c$.
- B. l'équation Ax = b n'admet aucune solution
- C. toute solution de Ax = c est une solution au sens des moindres carrés de Ax = b
- D. l'équation Ax = c possède une solution unique.

Exercice 18

Quelle équation correspond à la droite de régression par les points (0,1), (1,1), (2,2), (3,2)?

A.
$$y = 0.9 + 0.4x$$

B.
$$y = 1 + 0.5x$$

C.
$$y = 18 + 4x$$

D.
$$y = 1.1 + 0.6x$$

Exercice 19

Soit U une matrice de taille $n \times p$ dont les colonnes sont orthonormées et soit $W = \operatorname{Col}(U)$. Alors, pour tout vecteur $x \in \mathbb{R}^p$ et tout vecteur $y \in \mathbb{R}^n$, on a

A.
$$U^T U x = \operatorname{proj}_W(x)$$
 et $U U^T y = \operatorname{proj}_W(y)$

B.
$$U^TUx = x$$
 et $UU^Ty = 0$

C.
$$U^TUx = x$$
 et $UU^Ty = y$

D.
$$U^TUx = x$$
 et $UU^Ty = \text{proj}_W(y)$.

Exercice 20

Soit A une matrice dont les colonnes sont linéairement indépendantes, et soit A = QR sa factorisation QR. Alors R est une matrice inversible.

- A. Vrai
- B. Faux

Exercice 21

Calculer une factorisation QR de la matrice suivante :

$$A = \begin{pmatrix} 0 & 0 \\ 1 & 2 \\ 0 & -1 \\ -1 & 1 \end{pmatrix}$$

Soit

$$A = \begin{pmatrix} 1 & 3 & 0 \\ 1 & -1 & 6 \\ 1 & 1 & 3 \\ 0 & 1 & -6 \end{pmatrix}.$$

Soit A=QR la décomposition QR de A. Alors

[A.]
$$r_{33} = 2\sqrt{2}$$

[B.]
$$r_{33} = \sqrt{2}$$

[B.]
$$r_{33} = \sqrt{2}$$
 [C.] $r_{33} = \sqrt{3}$

[D.]
$$r_{33} = 3\sqrt{2}$$

Exercice 23

Soient A une matrice non-nulle de taille $m \times n$ et $b \in \mathbb{R}^m$. Alors, il est toujours vrai que

- A. le vecteur b Ax appartient à $\ker(A^T)$ pour un unique choix de $x \in \mathbb{R}^n$.
- B. la matrice A^TA est inversible.
- C. l'équation Ax = b admet une unique solution au sens des moindres carrés.
- D. si \hat{x} et \hat{x}' sont deux solutions au sens des moindres carrés de Ax = b, alors $A\hat{x} = A\hat{x}'$

Copyright 2012 © Prof. Assyr Abdulle, Prof. Simone Deparis, Dr. Christian Urech.

Informations générales, séries et corrigés : cf.

http://moodle.epfl.ch/course/view.php?id=15414

Les exercices de type vrai ou faux proviennent du livre : D.C. Lay. Algèbre linéaire : théorie, exercices et applications. De Boeck, Bruxelles, 2005.