Série 11

Exercice 1

- a) Trouver un vecteur non nul orthogonal à $\mathbf{z} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.
- b) Soient $\mathbf{u} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$, $\mathbf{w} = \begin{pmatrix} 5 \\ 6 \\ 0 \end{pmatrix}$. Calculer $\mathbf{u} \cdot \mathbf{v}, \quad \mathbf{v} \cdot \mathbf{w}, \quad \frac{\mathbf{u} \cdot \mathbf{w}}{\|\mathbf{v}\|}, \quad \frac{1}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}, \quad \frac{\mathbf{u} \cdot \mathbf{w}}{\|\mathbf{v}\|} \mathbf{v}.$
- c) Calculer la distance entre \mathbf{u} et \mathbf{v} et la distance entre \mathbf{u} et \mathbf{w} .
- d) Calculer les vecteurs unitaires correspondant à $\mathbf{u}, \mathbf{v}, \mathbf{w}$ (pointant dans la même direction que le vecteur original).

Exercice 2

Soient
$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\mathbf{u}_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix}$.

- a) Vérifier que \mathbf{u}_1 et \mathbf{u}_2 sont orthogonaux.
- b) Calculer la projection orthogonale $\mathbf{p}_W(\mathbf{v})$ de \mathbf{v} sur $W = \operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$.
- c) Donner la décomposition $\mathbf{v} = \mathbf{z} + \mathbf{p}_W(\mathbf{v})$, où $\mathbf{z} \in W^{\perp}$.

Même question pour
$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
, $\mathbf{u}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$, $\mathbf{u}_3 = \begin{pmatrix} 2 \\ -1 \\ -2 \\ 1 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}$.

Même question pour $\mathbf{u}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\mathbf{u}_2 = \begin{pmatrix} 2 \\ 2 \\ -2 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

Soient $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ et $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ deux bases orthonormales de \mathbb{R}^n . On définit les matrices de taille $n \times n$, $U = (\mathbf{u}_1 \dots \mathbf{u}_n)$ et $V = (\mathbf{v}_1 \dots \mathbf{v}_n)$. Montrer que $U^T U = I_n$, $V^T V = I_n$ et que UV est inversible.

Exercice 4

Appliquer la méthode de Gram-Schmidt pour orthogonaliser les bases de sous-espaces vectoriels de \mathbb{R}^n suivantes.

a)
$$\{\mathbf{w}_1, \mathbf{w}_2\}$$
 base d'un s.e.v. de \mathbb{R}^3 , avec $\mathbf{w}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{w}_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$.

b)
$$\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$$
 base d'un s.e.v. de \mathbb{R}^4 , avec $\mathbf{w}_1 = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 1 \end{pmatrix}$, $\mathbf{w}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$, $\mathbf{w}_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$.

c) Donner une base orthonormale pour a) et b).

Exercice 5

Soit W un sous-espace vectoriel de \mathbb{R}^n . Soit $\{\mathbf{w}_1, \dots, \mathbf{w}_q\}$ une base orthogonale de W. Soit $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ une base orthogonale de W^{\perp} .

Montrer que $\{\mathbf{w}_1, \dots, \mathbf{w}_q, \mathbf{v}_1, \dots, \mathbf{v}_r\}$ est orthogonale et prouver la relation

$$\dim W + \dim W^{\perp} = n$$
.

Exercice 6

Déterminer la solution au sens des moindres carrés de $A\mathbf{x} = \mathbf{b}$

a) en utilisant l'équation normale lorsque

i)
$$A = \begin{pmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}$,

ii)
$$A = \begin{pmatrix} 1 & 3 \\ 1 & -1 \\ 1 & 1 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix}$,

iii)
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & -1 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 2 \\ 5 \\ 6 \\ 6 \end{pmatrix}$;

b) en utilisant la méthode QR lorsque

i)
$$A = \begin{pmatrix} 0 & 0 \\ 1 & 2 \\ 0 & -1 \\ -1 & 1 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$,

ii)
$$A = \begin{pmatrix} 2 & 3 \\ 2 & 4 \\ 1 & 1 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Soit A une matrice de taille $m \times n$.

- a) Montrer que $Ker A = Ker(A^T A)$.
- b) Montrer que A^TA est inversible si et seulement si les colonnes de A sont linéairement indépendantes.

Exercice 8

Soit

$$A = \begin{bmatrix} 1 & -2 \\ 1 & 4 \\ 1 & -2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 12 \\ -13 \\ 10 \end{bmatrix}.$$

La solution au sens des moindres carrés $\hat{\mathbf{x}} = (\hat{x}_1, \hat{x}_2)$ du système $A\mathbf{x} = \mathbf{b}$ est telle que

$$\Box \hat{x}_2 = -4$$

$$\Box \hat{x}_2 = 3$$

$$\Box \hat{x}_2 = -3$$

$$\Box \hat{x}_2 = 4$$

Exercice 9

Soit $\mathbf{v} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$. Donner l'ensemble W des vecteurs orthogonaux à \mathbf{v} . Est-ce un espace vectoriel? Si oui, trouver une base de W. Justifier les réponses.

Exercice 10

Parmi les matrices suivantes, indiquer celles qui sont diagonalisables (toujours en justifiant), et le cas échéant, diagonaliser ces matrices et exhiber les vecteurs propres.

$$A = \begin{pmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 & 4 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 3 & 3 \end{pmatrix}, C = \begin{pmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3 \end{pmatrix},$$
$$D = \begin{pmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{pmatrix}, E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Soient

$$\mathbf{v_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \quad , \quad \mathbf{v_2} = \begin{pmatrix} i \\ 1 \\ 0 \end{pmatrix}$$

et A une matrice 3×3 à coefficients réels telle que :

- $\lambda_1 = 4$ est une valeur propre associé au vecteur $\mathbf{v_1}$
- $\lambda_2 = 2e^{i\pi/3}$ est une valeur propre associé au vecteur ${\bf v_2}$
- (a) Calculer le polynôme caracteristique de A dans \mathbb{R} et dans \mathbb{C} . Est-ce que A est diagonalisable dans \mathbb{R} ou dans \mathbb{C} ?
- (b) Calculer D et P tels que $A = PDP^{-1}$ avec D diagonale et P inversible.
- (c) Calculez P^{-1} .
- (d) Optionnel: calculez A

Rappel:

$$e^{i\pi/3} + e^{-i\pi/3} = 2\frac{e^{i\pi/3} + e^{-i\pi/3}}{2} = 2\cos(\pi/3) = 2\frac{1}{2} = 1$$
$$-ie^{i\pi/3} + ie^{-i\pi/3} = -i2\frac{e^{i\pi/3} - e^{-i\pi/3}}{2} = 2\sin(\pi/3) = 2\frac{\sqrt{3}}{2} = \sqrt{3}$$

Exercice 12

Considérons les matrices

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & 1 - \sqrt{3} & 1 + \sqrt{3} \\ 1 + \sqrt{3} & 1 & 1 - \sqrt{3} \\ 1 - \sqrt{3} & 1 + \sqrt{3} & 1 \end{pmatrix}.$$

- (a) Calculer les valeurs propres complexes de A et de B.
- (b) Calculer les vecteurs propres complexes de A et de B.
- (c) Soit P et Q les matrice dont les colonnes sont des vecteurs propres de A et de B, respectivement (associés à des valeurs propres différentes). Calculer $P^{-1}AP$ et $Q^{-1}BQ$ et interpréter le résultat.

Partiellement en classe

(Ces exercices seront sur les slides.)

Vrai/Faux : Soit A une matrice de taille $m \times n$, alors chaque ligne de A est orthogonale à tous les vecteurs dans $\ker(A)$ (par rapport au produit scalaire usuel de \mathbb{R}^n).

- 1. Vrai
- 2. Faux

Exercice 141

Vrai/Faux : Soit V un espace vectoriel et $\langle , \rangle \colon V \times V \to \mathbb{R}$ un produit scalaire. Soient $u,v \in V$ deux vecteurs. Alors u et v sont orthogonaux si et seulement si la distance entre u et v est la même que la distance entre v et v.

- A. Vrai
- B. Faux

Exercice 151

Vrai/faux : Une matrice de dimension $m \times n$ avec m > n peut avoir des lignes orthogonales.

- A. Vrai
- B. Faux

Exercice 161

Si U est une matrice $m \times n$ avec des colonnes orthonormales, alors $U^T U = I_n$.

- A. Vrai
- B. Faux : $UU^T = I_m$
- C. Pas toujours, ça dépend

Exercice 171

Appliquer la méthode de Gram-Schmidt pour orthogonaliser la base $\{w_1,w_2\}$ du sous-espace

vectoriel
$$V = \text{Vect}\{w_1, w_2\} \subset \mathbb{R}^3$$
, où $w_1 = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}$, $w_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$.

Exercice 181

Appliquer la méthode de Gram-Schmidt pour orthogonaliser la base $\{w_1, w_2\}$ du sousespace vectoriel $V = \text{Vect}\{w_1, w_2, w_3\} \subset \mathbb{R}^4$, où

$$w_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, w_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, w_3 = \begin{pmatrix} 3 \\ 4 \\ 5 \\ 0 \end{pmatrix}.$$

5

Vrai/Faux : Soit A une matrice $n \times n$ telle que les colonnes de A forment une base orthonormée de \mathbb{R}^n . Alors A est inversible.

- A. Vrai
- B. Faux

Exercice 201

Vrai/Faux : Soit A une matrice $n \times n$ telle que les colonnes de A forment une base orthonormée de \mathbb{R}^n . Alors les lignes de A forment une base orthonormée.

- A. Vrai
- B. Faux

Exercice 211

Soit B une matrice de taille $m \times n$ telle que $BB^T = I_m$. Alors

- A. Les colonnes de B forment un ensemble orthonormé
- B. Les lignes de B forment un ensemble orthonormé
- C. $B^TB = I_n$
- D. B est inversible

Exercice 221

Soient
$$x_1 = \begin{pmatrix} -2\\2\\1\\0 \end{pmatrix}, x_2 = \begin{pmatrix} 2\\2\\0\\1 \end{pmatrix}, x_3 = \begin{pmatrix} 3\\-2\\1\\7 \end{pmatrix}$$
 et soit $W = \text{Vect}\{x_1, x_2, x_3\}$. Le procédé

d'orthogonalisation de Gram-Schmidt, sans normalisation et sans changer l'ordre, appliqué à la base $\{x_1, x_2, x_3\}$ de W nous fournit une base orthogonale $\{v_1, v_2, v_3\}$ de W, où

A.
$$v_3 = x_3 - v_1 + v_2$$

B.
$$v_3 = x_3 + 9v_1 - 9v_2$$

C.
$$v_3 = x_3 + v_1 - v_2$$

D.
$$v_3 = x_3$$

Exercice 231

Soit W un sous-espace vectoriel de \mathbb{R}^n . Si v est dans W^{\perp} et dans W, alors v=0.

- A. Vrai
- B. Faux

Soit $W = Vect \left\{ \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} 4\\2\\1 \end{pmatrix} \right\}$. Trouver une base de W^{\perp} .

Exercice 251

Vrai/faux : Soit W un sous-espace vectoriel de \mathbb{R}^n . Si $y \in W$, alors sa projection orthogonale sur W est $p_W(y) = y$.

A. Vrai

B. Faux

Exercice 261

Soient $u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $u_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $v = \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix}$. Soit $W = \text{Vect}\{u_1, u_2\}$. Calculer la décomposition $v = z + p_W(v)$, où $z \in W^{\perp}$.

Exercice 271

Soient
$$v = \begin{pmatrix} 0 \\ 9 \\ 0 \\ -18 \end{pmatrix}$$
 et $W = \text{Vect} \left\{ \begin{pmatrix} 2 \\ -2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 4 \\ -4 \\ 6 \\ 2 \end{pmatrix} \right\}.$

Alors, le projeté orthogonal (par rapport au produit scalaire usuel) de v sur W est

A.
$$\begin{pmatrix} -3\\3\\4\\-1 \end{pmatrix}$$

$$B. \begin{pmatrix} -12 \\ 12 \\ -6 \\ -6 \end{pmatrix}$$

$$C. \begin{pmatrix} 8 \\ 1 \\ 0 \\ -14 \end{pmatrix}$$

D.
$$\begin{pmatrix} -8 \\ 8 \\ 0 \\ -4 \end{pmatrix}$$

Exercice 281

Soient $A = \begin{pmatrix} 1 & 0 \\ 3 & 5 \\ 5 & 4 \end{pmatrix}$ et $b = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$. Alors la solution au sens des moindres carrés $\hat{x} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$.

7

$$\begin{pmatrix} \hat{x}_1 \\ \hat{x}_2 \end{pmatrix}$$
 de l'équation $Ax = b$ satisfait

$$\hat{A}$$
. $\hat{x}_2 = 1/6$

B.
$$\hat{x}_2 = -35/6$$

C.
$$\hat{x}_2 = 41/6$$

D.
$$\hat{x}_2 = -5/6$$

Quelle affirmation est vraie pour toute matrice A de taille $n \times n$ et tout vecteur $b \in \mathbb{R}^n$?

- A. L'équation Ax = b a au plus une solution
- B. L'équation Ax = b a au plus une solution au sens des moindres carrées
- C. L'équation Ax = b a au moins une solution.
- D. L'équation Ax = b a au moins une solution au sens des moindres carrées.

Exercice 301

Soit u_1, \ldots, u_p une base orthonormée d'un sous-espace $W \subset \mathbb{R}^n$ et $y \in \mathbb{R}^n$ et soit U la matrice $n \times p$ dont les colonnes sont les vecteurs u_1, \ldots, u_p . Montrer que $p_W(y) = UU^T y$.

Copyright 2012 © Prof. Assyr Abdulle, Prof. Simone Deparis, Dr. Christian Urech. Informations générales, séries et corrigés : cf.

http://moodle.epfl.ch/course/view.php?id=15414

Les exercices de type vrai ou faux proviennent du livre : D.C. Lay. Algèbre linéaire : théorie, exercices et applications. De Boeck, Bruxelles, 2005.