Série 7

Exercice 1

Trouver les matrices correspondant aux transformations linéaires suivantes (exprimées dans la base canonique) :

a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T\left(\begin{pmatrix} 1\\0 \end{pmatrix}\right) = \begin{pmatrix} 0\\1 \end{pmatrix}$, $T\left(\begin{pmatrix} 0\\1 \end{pmatrix}\right) = \begin{pmatrix} 1\\0 \end{pmatrix}$

b)
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
, $T\left(\begin{pmatrix} 1\\0 \end{pmatrix}\right) = \begin{pmatrix} 1\\0\\1 \end{pmatrix}$, $T\left(\begin{pmatrix} 0\\1 \end{pmatrix}\right) = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$

c)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $T\left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}\right) = \begin{pmatrix} 1\\1 \end{pmatrix}$, $T\left(\begin{pmatrix} 0\\1\\0 \end{pmatrix}\right) = \begin{pmatrix} 0\\1 \end{pmatrix}$, $T\left(\begin{pmatrix} 0\\0\\1 \end{pmatrix}\right) = \begin{pmatrix} 2\\7 \end{pmatrix}$

Exercice 2

- a) Soit A une matrice 5×6 . Si dim Ker A = 3, quel est le rang de A?
- b) Soit A une matrice 7×3 . Quel est le rang maximum de A? Quelle est la dimension minimum de Ker A? Même question si A est une matrice 3×7 .
- c) Soit A une matrice $n \times n$. Donner une condition sur rg(A) pour que A^T soit inversible.
- d) Soit $\mathbf{T}: \mathbb{R}^3 \to \mathbb{R}^3$ une transformation linéaire telle que $\mathbf{T} \circ \mathbf{T} = \mathbf{I}_3$ (application identité). Quelle est la dimension de Ker \mathbf{T} ?

Exercice 3

Soit
$$B = \{1 - 3t^2, 2 + t - 5t^2, 1 + 2t\}.$$

- a) Vérifier que B est une base de \mathbb{P}_2 , l'espace vectoriel des polynômes de degré inférieur ou égal à 2.
- b) Déterminer la matrice de passage de la base B vers la base canonique $\{1,t,t^2\}$.
- c) Écrire t^2 comme combinaison linéaire des vecteurs de B.

Exercice 4

Montrer que la dimension de \mathbb{P} (espace des polynômes à coefficients réels) est infinie.

Exercice 5

Soit $\mathbf{T}: \mathbb{R}^n \to \mathbb{R}^m$ une transformation linéaire. Montrer qu'une condition nécessaire pour que \mathbf{T} soit bijective est n=m.

Exercice 6

Dans les cas suivants, écrire la matrice canonique correspondant à la transformation, et déterminer si la transformation est injective, surjective ou bijective.

a)
$$\mathbf{T}: \mathbb{R}^2 \to \mathbb{R}^3$$
, $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 4x_1 + 3x_2 \\ x_1 \\ x_2 \end{pmatrix}$

b)
$$T: \mathbb{R}^3 \to \mathbb{R}, \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto x_1 + x_2 + x_3$$

c)
$$\mathbf{T}: \mathbb{R}^3 \to \mathbb{R}^3, \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} x_3 \\ x_2 \\ x_1 \end{pmatrix}$$

d)
$$\mathbf{T}: \mathbb{R}^2 \to \mathbb{R}^2$$
, $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + x_2 \\ x_1 + x_2 \end{pmatrix}$

e)
$$\mathbf{T}: \mathbb{R}^2 \to \mathbb{R}^2$$
, $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \end{pmatrix}$

f)
$$\mathbf{T}: \mathbb{R}^2 \to \mathbb{R}^2$$
, $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1^2 + x_2^2 \\ x_1 \end{pmatrix}$

Partiellement en classe mardi

Exercice 7

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- (a) Soient V un espace vectoriel et H un sous-espace vectoriel de V. Alors V est un sous-espace vectoriel de lui-même (ou d'un espace vectoriel plus grand) et H est un espace vectoriel.
- (b) Si H est un sous-ensemble d'un espace vectoriel V, alors il suffit que 0_V soit dans H pour que H soit un sous-espace vectoriel de V.
- (c) Une matrice carrée A est inversible si et seulement si $Ker(A) = \{0\}$.
- (d) Le noyau d'une matrice A n'est pas nécessairement un espace vectoriel.

Exercice 8

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) Si une matrice A est de taille $m \times n$ alors l'image de la transformation $\mathbf{x} \mapsto A\mathbf{x}$ est contenue dans \mathbb{R}^n .
- b) Chaque transformation linéaire est une transformation matricielle.
- c) La transformation $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = mx^2 + b$ est linéaire pour b = 0.
- d) Une transformation linéaire préserve les opérations d'addition vectorielle et de multiplication par un scalaire.

Exercice 9

Calculer les produits matriciels suivants, et indiquer les compositions correspondantes de transformations linéaires, avec les dimensions des espaces, $\mathbf{T}_{AB}: \mathbb{R}^{\cdots} \to \mathbb{R}^{\cdots} \to \mathbb{R}^{\cdots}$.

(a)
$$AB$$
, où $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \end{pmatrix}$.

(b)
$$ABC$$
, où $A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{pmatrix}$.

(c)
$$ABC$$
, où $A = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

Exercice 10

Soient
$$T_1: \mathbb{R}^2 \to \mathbb{R}^3$$
; $\begin{pmatrix} x_1 \\ x_2 \\ x_1 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ x_2 \\ x_1 \end{pmatrix}$, et $T_2: \mathbb{R}^3 \to \mathbb{R}$; $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto x_1 + x_2 + x_3$.

- (a) Écrire les matrices canoniques associées à T_1 et T_2 et le produit matriciel associé à la composition $T_2 \circ T_1$ telle que $T_2 \circ T_1(\mathbf{x}) = T_2(T_1(\mathbf{x}))$ pour tout $\mathbf{x} \in \mathbb{R}^2$.
- (b) Quel est le domaine de définition de $T_2 \circ T_1$? Quel est le domaine d'arrivée?

Partiellement en classe jeudi

Exercice 11

Soient $V = \mathbb{P}_2(\mathbb{R})$, $B = (t^2 - 1, t + 1, t - 1)$ et $C = (1, t, t^2)$ deux bases de V. Soit $T : V \to V$, T(p) = p'(t)t + p(0).

- (a) Calculer la matrice de passage entre les bases \mathcal{B} et \mathcal{C}
- (b) Calculer la matrice de passage entre les bases $\mathcal C$ et $\mathcal B$
- (c) Calculer la matrice de T par rapport à la base \mathcal{C} (ensemble de départ et d'arrivé).
- (d) Calculer la matrice de T par rapport à la base \mathcal{B} (ensemble de départ et d'arrivé).

Exercice 12

Soient $A, B \in M_{n \times n}(\mathbb{R})$ deux matrices semblables. Montrer que $\dim(\ker(A)) = \dim(\ker(B))$.

Exercice 13

Soient $A, B \in M_{n \times n}(\mathbb{R})$ deux matrices semblables. Quelles affirmations sont toujours vraies?

- A. $\ker(A) = \ker(B)$
- B. $\dim(\ker(A)) = \dim(\ker(B))$
- C. Col(A) = Col(B)
- D. rg(A) = rg(B)

Exercice 14

Soit A une matrice $m \times n$ et $T_A \colon \mathbb{R}^n \to \mathbb{R}^m$ l'application linéaire donnée par $v \mapsto Av$. Soient A' une matrice $m \times n$ ligne-équivalente à A et $T_{A'} \colon \mathbb{R}^n \to \mathbb{R}^m$ l'application linéaire donnée par $v \mapsto A'v$.

Quelles affirmations sont toujours vraies?

A. $\ker T_A = \ker T_{A'}$.

B. $\dim(\ker T_A) = \dim(\ker T_{A'}).$

C. $\operatorname{im} T_A = \operatorname{im} T_{A'}$.

D. $\dim(\operatorname{im} T_A) = \dim(\operatorname{im} T_{A'}).$

E. Aucunes des affirmations ci-dessus.

Exercice 15

Soit $\mathcal E$ la base canonique de $\mathbb R^3$ et $\mathcal B$ la base de $\mathbb R^3$ donnée par

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Calculer la matrice de passage $P_{\mathcal{B}\mathcal{E}} = [\mathrm{id}]_{\mathcal{B}\mathcal{E}}$ et la matrice de passage $P_{\mathcal{E}\mathcal{B}} = [\mathrm{id}]_{\mathcal{E}\mathcal{B}}$.

Copyright 2012 © Prof. Assyr Abdulle, Prof. Simone Deparis, Dr. Christian Urech.

Informations générales, séries et corrigés : cf.

http://moodle.epfl.ch/course/view.php?id=15414

Les exercices de type vrai ou faux proviennent du livre : D.C. Lay. Algèbre linéaire : théorie, exercices et applications. De Boeck, Bruxelles, 2005.