Série 5

Le noyau d'une matrice A de taille $m \times n$, noté ker A, est le sous-espace vectoriel de \mathbb{R}^n constitué des solution du système homogène Ax = 0.

Exercice 1

Considérons les vecteurs
$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$
, $\mathbf{a}_2 = \begin{pmatrix} 5 \\ -13 \\ -3 \end{pmatrix}$, et $\mathbf{b} = \begin{pmatrix} -3 \\ 8 \\ 1 \end{pmatrix}$.

- i) Est-il possible d'écrire \mathbf{b} comme combinaison linéaire de \mathbf{a}_1 et \mathbf{a}_2 ?
- ii) Donner une interprétation géométrique du résultat.

Exercice 2

Considérons les vecteurs
$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$$
, $\mathbf{a}_2 = \begin{pmatrix} -3 \\ 1 \\ 8 \end{pmatrix}$, et $\mathbf{b} = \begin{pmatrix} \alpha \\ -5 \\ -3 \end{pmatrix}$.

Pour quelle(s) valeur(s) de α le vecteur **b** est-il une combinaison linéaire de \mathbf{a}_1 et \mathbf{a}_2 ?

Exercice 3

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) Les colonnes d'une matrice A sont linéairement indépendantes si l'équation $A\mathbf{x} = \mathbf{0}$ admet la solution triviale.
- b) Si A possède des colonnes linéairement dépendantes, alors l'équation $A\mathbf{x} = \mathbf{0}$ admet une solution non triviale.
- c) Les colonnes de toute matrice de taille 4×5 sont linéairement dépendantes.
- d) Si le vecteur nul est l'un des vecteurs d'une famille $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p)$, alors ces vecteurs sont linéairement indépendants.

Exercice 4

Donner un exemple d'une famille des vecteurs de \mathbb{R}^3 qui

- a) est linéairement indépendante, mais qui n'est pas une base.
- b) engendre \mathbb{R}^3 , mais qui n'est pas une base.

Exercice 5

- (a) Quelle est la dimension du sous-espace vectoriel W de \mathbb{R}^2 donné par $W = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ où $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
- (b) Trouver un sous-ensemble B de $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ tel que B soit une base de W.
- (c) Agrandir l'ensemble $\{\mathbf v_1+\mathbf v_2\}\subset W$ pour obtenir une base de W.

Exercice 6

Soit $V = \mathbb{R}^4$ et $S = \{(2,0,3,4), (0,1,1,-1), (3,1,0,2), (1,0,-4,-1)\} \subset V$. Trouver une base de Vect(S) et compléter cette base en une base de V.

Pas fait en classe la semaine dernière

Si vous ne l'avez pas fais, résolvez ces exercices.

Exercice 7

Une base de $\mathbb{P}_d(\mathbb{R})$ est donnée par

A.
$$\{t, t^2, \dots, t^d\}$$

B.
$$\{1, t, t^2, \dots, t^d\}$$

C.
$$\{1, 1+t, 1+t+t^2, \dots, 1+t+\dots+t^d\}$$

(plusieurs réponses correctes).

Exercice 8

Soit

$$E = \left\{ \begin{pmatrix} 9 \\ 9 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 12 \\ 12 \\ 0 \end{pmatrix} \right\} \subset \mathbb{R}^3.$$

Alors

A.
$$\dim Vect(E) = 3$$

B.
$$\dim Vect(E) = 2$$

C.
$$\dim \text{Vect}(E) = 1$$

D.
$$\dim Vect(E) = 0$$

Partiellement en classe

Exercice 9

L'assertion suivante est-elle correcte (justifier)?

Tout ensemble de vecteurs $\{\mathbf v_1,...,\mathbf v_p\}$ de $\mathbb R^n$ est linéairement dépendant si p>n.

3

Exercice 10

Soit
$$A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 1 & 2 & 3 & 0 \\ 1 & 2 & 3 & 1 \end{pmatrix}$$
. Trouver une base de Ker(A) et de Col(A).

Exercice 11

- (a) On considère le vecteur $\mathbf{v} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ exprimé dans la base canonique de \mathbb{R}^2 . Trouver les coordonnées de \mathbf{v} dans la base $\{\mathbf{b}_1, \mathbf{b}_2\}$ de \mathbb{R}^2 , où $\mathbf{b}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et $\mathbf{b}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
- (b) Même question pour $\mathbf{v} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ donné dans la base canonique de \mathbb{R}^3 à exprimer dans la base $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ donnée par $\mathbf{b}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\mathbf{b}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\mathbf{b}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Exercice 12

Quelles sont les coordonnées de la matrice $\begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix}$ par rapport à la base ordonnée

$$\mathcal{B} = \left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \right)?$$

A.
$$\begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}$$
 C. $\begin{pmatrix} 2\\1\\0\\3 \end{pmatrix}$

B.
$$\begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$$
 D. $\begin{pmatrix} 2\\1\\0\\0 \end{pmatrix}$

Exercice 13

Quelle est la dimension du sous-espace vectoriel de \mathbb{R}^4 suivant?

$$W := \operatorname{Vect}\left(\begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\2\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\2\\1 \end{pmatrix}\right)$$

- A. 1
- B. 2
- C. 3
- D. 4

Trouver aussi une base de W et la compléter.

Exercice 14

On considère l'application $T \colon \mathcal{M}_{2 \times 2}(\mathbb{R}) \to \mathbb{R}^2$ définie par

$$T\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = (a+b, c+d-a+1).$$

Alors,

A. T est linéaire,

B. T n'est pas linéaire.

Copyright 2012 © Prof. Assyr Abdulle, Prof. Simone Deparis, Dr. Christian Urech.

Informations générales, séries et corrigés : cf.

http://moodle.epfl.ch/course/view.php?id=15414

Les exercices de type vrai ou faux proviennent du livre : D.C. Lay. Algèbre linéaire : théorie, exercices et applications. De Boeck, Bruxelles, 2005.