Série 8, Exerice en classe (Corrigé)

Exercice 1

Soit $A = \begin{pmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{pmatrix}$ et $C_{\lambda} = A - \lambda I$, où $\lambda \in \mathbb{R}$ et I est la matrice identité 3×3 .

- a) Pour quelles valeurs de λ la matrices C_{λ} est inversibles? (Utilisez le déterminant de C_{λ} .) Pour ces valeurs, calculer une base de noyau de C_{λ} .
- b) Pour $\lambda = 5$, calculez $\det(C_{\lambda})$ ainsi qu'une base de C_{λ} .
- c) Pour $\lambda = 4$, calculez $\det(C_{\lambda})$ et déterminez si dim $\ker C_{\lambda}$ est égale à zéro.

Solution: On va utiliser la propriété: C_{λ} inversible $\Leftrightarrow \det C_{\lambda} \neq 0$.

$$\det C_{\lambda} = \begin{vmatrix} 4 - \lambda & 0 & -2 \\ 2 & 5 - \lambda & 4 \\ 0 & 0 & 5 - \lambda \end{vmatrix} = +(5 - \lambda) \begin{vmatrix} 4 - \lambda & 0 \\ 2 & 5 - \lambda \end{vmatrix} = (5 - \lambda)^{2} (4 - \lambda)$$

Donc $C_{\lambda} = 0 \Leftrightarrow \lambda = 4 \text{ ou } 5.$

a) C_{λ} est inversible $\Leftrightarrow \det C_{\lambda} \neq 0 \Leftrightarrow (\lambda \neq 4 \ et \neq 5)$.

Pour ces valeurs, $\operatorname{Ker} C_{\lambda} = \{0\}$ dont la base est l'ensemble vide.

b) $\det C_5 = (5-5)^2(4-5) = 0$ donc C_5 n'est pas inversible et son noyau n'est pas trivial.

$$C_5 = \begin{pmatrix} 4-5 & 0 & -2 \\ 2 & 5-5 & 4 \\ 0 & 0 & 5-5 \end{pmatrix} = \begin{pmatrix} -1 & 0 & -2 \\ 2 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix} [L_2 + 2L_1; -L_1] \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 x_2, x_3 sont des variable libre. Pour construire une base on a besoin de deux vecteurs. On choisi d'abord $x_2 = 1$ et $x_3 = 0$ et ensuite $x_2 = 0$ et $x_3 = 1$ et on obtient la base de Ker C_5

$$\left\{ \left(\begin{array}{c} 0\\1\\0 \end{array}\right), \left(\begin{array}{c} -2\\0\\1 \end{array}\right) \right\}$$

Vérification :

$$C_5 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \text{ et } C_5 \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} = -2 \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} + 1 \begin{pmatrix} -2 \\ 4 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

c) det $C_4 = (5-4)^2(4-4) = 0$ donc C_4 n'est pas inversible et son noyau n'est pas trivial. Cela signifie que dim Ker $C_4 > 0$.