Série 7, Rendu en groupe (Corrigé)

Exercice 1

Soient $B = \{\mathbf{b}_1, \mathbf{b}_2\}$ et $C = \{\mathbf{c}_1, \mathbf{c}_2\}$ deux bases de \mathbb{R}^2 . On suppose $\mathbf{b}_1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \mathbf{b}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{c}_1 = \begin{pmatrix} 4 \\ 3 \end{pmatrix}, \mathbf{c}_2 = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$.

a) Donner la matrice de changement de base (matrice de passage) de la base C vers la base B.

Solution : P_{BC} est la matrice dont les colonnes sont les coordonnées de \mathbf{c}_1 et \mathbf{c}_2 dans la base $B: P_{BC} = ([\mathbf{c}_1]_B [\mathbf{c}_2]_B)$. Il faut donc résoudre deux sytèmes linéaires afin de trouver $[\mathbf{c}_i]_B$, i = 1, 2:

$$\mathbf{c}_i = x_{1i}\mathbf{b}_1 + x_{2i}\mathbf{b}_2 = (\mathbf{b}_1 \quad \mathbf{b}_2) \begin{pmatrix} x_{1i} \\ x_{2i} \end{pmatrix}.$$

Ainsi, P_{BC} est la solution de

$$(\mathbf{b}_1 \quad \mathbf{b}_2)P_{BC} = (\mathbf{c}_1 \quad \mathbf{c}_2).$$

Si on désigne par E la base canonique, cela peut aussi être interprété comme $P_{EB}P_{BC} = P_{EC}$. Pour résoudre ce système linéaire, on échelonne et on réduit la matrice $(\mathbf{b}_1 \quad \mathbf{b}_2)$ augmentée avec les vecteurs \mathbf{c}_1 et \mathbf{c}_2 :

$$(\mathbf{b}_1 \quad \mathbf{b}_2 | \mathbf{c}_1 \quad \mathbf{c}_2) = \begin{pmatrix} 3 & 1 & 4 & 4 \\ 2 & 1 & 3 & 0 \end{pmatrix} \leadsto \begin{pmatrix} 1 & 0 & 1 & 4 \\ 0 & 1 & 1 & -8 \end{pmatrix}.$$

Ainsi, la matrice de passage cherchée est $P_{BC} = \begin{pmatrix} 1 & 4 \\ 1 & -8 \end{pmatrix}$.

b) Donner la matrice de changement de base (matrice de passage) de la base B vers la base C.

Solution : On a $P_{CB} = P_{BC}^{-1}$, d'où la matrice cherchée est $P_{CB} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{12} & -\frac{1}{12} \end{pmatrix}$.

c) Si $\mathbf{v} \in \mathbb{R}^2$ est tel que $[\mathbf{v}]_B = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$, calculer $[\mathbf{v}]_C$.

Solution:
$$[\mathbf{v}]_C = P_{CB} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ \frac{1}{4} \end{pmatrix}$$
.

d) À présent, si $[\mathbf{v}]_C = \begin{pmatrix} 9 \\ 1 \end{pmatrix}$, calculer $[\mathbf{v}]_B$.

Solution:
$$[\mathbf{v}]_B = P_{BC} \begin{pmatrix} 9 \\ 1 \end{pmatrix} = \begin{pmatrix} 13 \\ 1 \end{pmatrix}$$
.