Série 6, Rendu en groupe (Corrigé)

Exercice 1

Soit \mathbb{P}_4 l'espace vectoriel des polynômes réels de degré inférieur ou egale à 4 et \mathbb{P}_3 l'espace vectoriel des polynômes réels de degré inférieur ou egale à 3. Soit $T: \mathbb{P}_4 \to \mathbb{P}_3$ l'application linéaire qui associe à chaque polynôme sa dérivé, c'est à dire T(p) = p' pour chaque $p \in \mathbb{P}_4$.

- (a) Calculer le noyau de T et trouver sa dimension.
- (b) Étant donné la base $\mathcal{B} = \{1 + x, 2x, x + x^2, x + x^3, x + x^4\}$ de \mathbb{P}_4 et la base $\mathcal{C} = \{1, x, x^2, x^3\}$ de \mathbb{P}_3 , calculer la matrice $[T]_{\mathcal{CB}}$ associé à T par rapport aux bases \mathcal{B} et \mathcal{C} .
- (c) Calculer la dérivée de $q(x) = 1 + 3x + 4x^3 x^4$ en utilisant la matrice $[T]_{\mathcal{CB}}$.
- (d) Calculer une base et la dimension du noyau de la matrice $[T]_{\mathcal{CB}}$. Quel est le rapport avec le noyay de T?

Rappel : la dérivée de $a_k x^k$ est $a_k k x^{k-1}$, k = 1, 2, ...

Solution:

- (a) Le noyau de la transformation T est l'ensemble des polynômes de p dans \mathbb{P}_4 tels que T(p)=0. Seulement les constants ont dervée nulle, donc. $\mathrm{Ker}(T)=\{p(x)=a_o\,,a_0\in\mathbb{R}\}$, dont une base est constitué du polynome constant p(x)=1. On conclut aussi que $\mathrm{dim}\,\mathrm{Ker}(T)=1$.
- (b) On peut écrire

$$[T]_{\mathcal{CB}} = [[T(b_1)]_{\mathcal{C}}, [T(b_2)]_{\mathcal{C}}, [T(b_3)]_{\mathcal{C}}, [T(b_4)]_{\mathcal{C}}, [T(b_5)]_{\mathcal{C}}]$$

$$= [[1]_{\mathcal{C}}, [2]_{\mathcal{C}}, [1+2x]_{\mathcal{C}}, [1+3x^2]_{\mathcal{C}}, [1+4x^3]_{\mathcal{C}}]$$

$$= \begin{pmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix}.$$

(c) Pour $q(x) = 1 + 3x + 4x^3 - x^4$, il faut d'abord trouver ses coordonnées par rapport à \mathcal{B} : Les coefficients α_j doivent satisfaire $\alpha_1(1+x) + \alpha_2(2x) + \alpha_3(x+x^2) + \alpha_4(x+x^3) + \alpha_5(x+x^4) = q(x)$. Il faut que les coefficients de chaque monome soient égaux, ce qui revient à résoudre le système linéaire dont la matrice augmentéee est

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & | & 1 \\ 1 & 2 & 1 & 1 & 1 & | & 3 \\ 0 & 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & 0 & | & 4 \\ 0 & 0 & 0 & 0 & 1 & | & -1 \end{pmatrix}. La solution est $[q]_{\mathcal{B}} = \begin{pmatrix} 1 \\ -1/2 \\ 0 \\ 4 \\ -1 \end{pmatrix}$$$

 $Contrôle: 1(1+x) - \frac{1}{2}x + 0(x+x^2) + 4(x+x^3) - (x+x^4) = 1 + (1-1+4-1)x + 4x^3 - x^4 = q$ Les coefficients de sa dérivée q' peuvent être calculée comme suit

$$\underbrace{\begin{pmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix}}_{[T]_{CB}} \underbrace{\begin{pmatrix} 1 \\ -1/2 \\ 0 \\ 4 \\ -1 \end{pmatrix}}_{[p]_{B}} = \underbrace{\begin{pmatrix} 3 \\ 0 \\ 12 \\ -4 \end{pmatrix}}_{[T(p)]_{C}},$$

 $c\grave{a}$ -d, $q'(x)=3+12x^2-4x^3$. Cela est cohérent avec le calcul direct de la dérivée de q.

(d) En partant de la matrice $[T]_{CB}$, qui est déjà sous forme forme échelonnée, on remarque qu'il y a 4 colonnes pivot, donc $\operatorname{rg}([T]_{CB}) = 4$. En utilisant le théorème de rang :

dim Ker
$$[T]_{\mathcal{CB}}$$
 = (nombre de colonnes de $[T]_{\mathcal{CB}}$) - rg($[T]_{\mathcal{CB}}$) = 5 - 4 = 1.

De plus, x_2 est la seule variable libre du système et une base du Ker $[T]_{CB}$ est par exemple :

$$\left\{ \left(\begin{array}{c} -2\\1\\0\\0\\0 \end{array} \right) \right\}$$

Une base du noyau de $[T]_{\mathcal{CB}}$ est donnée par le polynome p tel que $[p]_{\mathcal{C}} = (-2, 1, 0, 0, 0)^T$, c'est à dire p(x) = -2(1+x) + x = -2, ce qui est cohérent avec le résultat au point (a), même si la base n'est pas égale. La dimension du noyau de $[T]_{\mathcal{CB}}$ est 1, comme la dimension du noyau de $[T]_{\mathcal{CB}}$ est 1.

Dans ce exercice, le contrôle est fait en regardant la correspondance entre les espaces des polynomes et les espaces coordonnées, par exemple entre T et $[T]_{CB}$.