Série 2 (Corrigé)

Objectifs de cette série

À la fin de cette série vous devriez être capable de

- (O.1) calculer la **forme échelonnée réduite** d'une matrice, avec la méthode de Gauss;
- (O.2) déterminer les variables liées et variables libres;
- (O.3) calculer les solutions d'un SEL à partir de la forme échelonnée réduite;
- (O.4) exprimer un vecteur de \mathbb{R}^n comme **combinaison linéaire** d'autres vecteurs, si possible.

Nouveau vocabulaire dans cette série

- méthode d'élimination de Gauss
- variables liées (ou de base)
- variables libres (ou fondamentales)
- combinaison linéaire

Exemple de passage de la forme échelonnée réduite à la solution générale Forme échelonnée réduite (de la matrice augmentée) :

$$\left(\begin{array}{cccccccc}
1 & \frac{1}{2} & -2 & 0 & 0 & 3 \\
0 & 0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & -\pi
\end{array}\right)$$

Le système est compatible, il y a une solution (au moins). Variables de bases : x_1 , x_4 , x_5 . Variables libres : x_2 , x_3 . Il y a une infinité de solutions. Solution générale :

$$\begin{cases} x_1 = 3 - \frac{1}{2}x_2 + 2x_3 \\ x_4 = 2 \\ x_5 = -\pi \end{cases}$$

Définition : Si les coefficients $b_1, ..., b_m$ sont tous nuls, on dit que le système est **homogène**, autrement qu'il est hétérogène. Un système homogène est toujours compatible car il a au moins la solution **triviale** (0, 0, ..., 0).

Exercice 1

Pour chacun des systèmes suivants :

1) Écrire la matrice augmentée.

- 2) Transformer la matrice augmentée sous forme échelonnée réduite.
- 3) Identifier les variables de bases et les variables libres, et écrire la solution générale.

a)
$$\begin{cases} 2x_1 + x_2 = 8 \\ 4x_1 - 3x_2 = 6 \end{cases}$$

Solution : Matrice augmentée :

$$\left(\begin{array}{ccc} 2 & 1 & 8 \\ 4 & -3 & 6 \end{array}\right)$$

Forme échelonnée réduite :

$$\left(\begin{array}{ccc} 1 & 0 & 3 \\ 0 & 1 & 2 \end{array}\right)$$

 $Variables\ de\ bases: x_1\ et\ x_2.\ Pas\ de\ variable\ libre.\ Solution\ générale:$

$$\begin{cases} x_1 = 3 \\ x_2 = 2 \end{cases}$$

b)
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 0 \\ -2x_1 + x_2 - x_3 = 2 \\ 2x_1 - x_2 + 2x_3 = -1 \end{cases}$$

Solution : Matrice augmentée :

$$\left(\begin{array}{ccccc}
3 & 2 & 1 & 0 \\
-2 & 1 & -1 & 2 \\
2 & -1 & 2 & -1
\end{array}\right)$$

Forme échelonnée réduite :

$$\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)$$

Variables de bases : x_1 , x_2 , x_3 . Pas de variable libre. Solution générale :

$$\begin{cases} x_1 &= -1 \\ x_2 &= 1 \\ x_3 &= 1 \end{cases}$$

c)
$$\begin{cases} x_1 + 2x_2 & = 1 \\ x_3 & = 2 \\ x_4 & = -1 \end{cases}$$

Solution : Matrice augmentée :

$$\left(\begin{array}{cccccc}
1 & 2 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & -1
\end{array}\right)$$

2

Déjà sous forme échelonnée réduite. Variables de bases : x_1 , x_3 , x_4 . Variable libre : x_2 . Solution générale :

$$\begin{cases} x_1 &= 1 - 2x_2 \\ x_3 &= 2 \\ x_4 &= -1 \end{cases}$$

d)
$$\begin{cases} x_1 + 2x_2 + x_3 = 1 \\ 2x_1 + 4x_2 + 2x_3 = 3 \end{cases}$$

Solution : Matrice augmentée :

$$\left(\begin{array}{rrrr}1 & 2 & 1 & 1\\2 & 4 & 2 & 3\end{array}\right)$$

Forme échelonnée réduite :

$$\left(\begin{array}{cccc}
1 & 2 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)$$

Pas de solution. Théoriquement, variable de base : x_1 , variables libres : x_2 , x_3 .

e)
$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 2 \\ x_1 + x_2 + x_3 + 2x_4 + 2x_5 = 3 \\ x_1 + x_2 + x_3 + 2x_4 + 3x_5 = 2 \end{cases}$$

Solution : Matrice augmentée :

Forme échelonnée réduite :

$$\left(\begin{array}{ccccccccc}
1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & -1
\end{array}\right)$$

Variables de bases : x_1 , x_4 , x_5 . Variables libres : x_2 , x_3 . Solution générale :

$$\begin{cases} x_1 = 1 - x_2 - x_3 \\ x_4 = 2 \\ x_5 = -1 \end{cases}$$

Partiellement en classe mardi

Exercice 2

Déterminer si les systèmes linéaires homogènes suivants ont une solution non triviale.

a)
$$\begin{cases} 2x_1 - 5x_2 + 8x_3 = 0 \\ -2x_1 - 7x_2 + x_3 = 0 \\ 4x_1 + 2x_2 + 7x_3 = 0 \end{cases}$$

Solution : Le système est carré (autant d'équations que d'inconnues) et on peut remarquer la relation de dépendance linéaire sur les lignes $L_1 = L_2 + L_3$, il existe donc une infinité de solutions.

On peut aussi résoudre le système. La forme échelonnée réduite de la matrice augmentée est :

$$\left(\begin{array}{cccc}
1 & 0 & \frac{17}{8} & 0 \\
0 & 1 & -\frac{3}{4} & 0 \\
0 & 0 & 0 & 0
\end{array}\right).$$

Sa solution générale est

$$\begin{cases} x_1 = -\frac{17}{8}x_3 \\ x_2 = \frac{3}{4}x_3 \end{cases}.$$

Il existe une infinité de solutions non triviales (prendre $x_3 \neq 0$).

b)
$$\begin{cases} x_1 - 3x_2 + 7x_3 = 0 \\ -2x_1 + x_2 - 4x_3 = 0 \\ x_1 + 2x_2 + 9x_3 = 0 \end{cases}$$

Solution : Forme échelonnée réduite de la matrice augmentée :

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

Solution triviale $(x_1 = x_2 = x_3 = 0)$.

c)
$$\begin{cases} -7x_1 + 37x_2 + 119x_3 = 0 \\ 5x_1 + 19x_2 + 57x_3 = 0 \end{cases}$$

Solution: Le système a moins d'équations (deux) que d'inconnues (trois) et il est compatible, donc il existe une infinité de solutions.

Exercice 3

On considère le système d'équations linéaires dont la matrice augmentée est

$$\left(\begin{array}{cccc}
0 & 1 & -1 & 2 \\
1 & -1 & 0 & 2h - 4 \\
-1 & -1 & 2 & -3 - h
\end{array}\right),$$

où $h \in \mathbb{R}$ est un paramètre.

Discutez la taille de l'ensemble des solutions selon le paramètre h.

Solution:

Commençons par chercher une forme échelonnée de la matrice augmentée. En faisant $L_3 \leftarrow L_3 + L_2$ puis $L_3 \leftarrow L_3 + 2L_1$, on obtient :

$$A = \left(\begin{array}{cccc} 0 & 1 & -1 & 2\\ 1 & -1 & 0 & 2h - 4\\ 0 & 0 & 0 & h - 3 \end{array}\right)$$

Ces deux étapes sont équivalente à faire $L_3 \leftarrow L_3 + L_2 + 2L_1$ Ensuite, on échange L_1 avec L_2 , on obtient une forme échelonnée :

$$A = \begin{pmatrix} 1 & -1 & 0 & 2h - 4 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & h - 3 \end{pmatrix}$$

- $si\ h-3=0$, alors le système est compatible et a une infinité de solutions ;
- $si\ h-3 \neq 0$, alors le système est incompatible et l'ensemble des solutions est vide.

Partiellement en classe jeudi

Exercice 4

Considérons les matrices suivantes :

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 3 & 1 \\ 2 & 2 \\ 1 & 4 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 3 \\ 2 & 3 \end{pmatrix}$$
$$D = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \qquad E = \begin{pmatrix} 1 & 4 \end{pmatrix}.$$

Calculer les produits suivants (s'ils existent). Si les produits n'existent pas, expliquer pourquoi.

b)
$$AA^{T}$$
, $A^{T}A$, BA^{T} , BC^{T} , $C^{T}A$, BD^{T} , $D^{T}B$

Solution:

a)
$$AB = \begin{pmatrix} 9 & 8 \\ 4 & 10 \end{pmatrix}$$
, $BA = \begin{pmatrix} 6 & 4 & 5 \\ 4 & 4 & 6 \\ 2 & 5 & 9 \end{pmatrix}$, AC n'existe pas : $(2 \times 3) \times (2 \times 2)$, $CA = \begin{pmatrix} 2 & 4 & 7 \\ 4 & 5 & 8 \end{pmatrix}$, $BC = \begin{pmatrix} 5 & 12 \\ 6 & 12 \\ 9 & 15 \end{pmatrix}$, CB n'existe pas : $(2 \times 2) \times (3 \times 2)$, CD n'existe pas : $(2 \times 2) \times (3 \times 1)$, $EC = \begin{pmatrix} 9 & 15 \end{pmatrix}$, $EA = \begin{pmatrix} 2 & 5 & 9 \end{pmatrix}$.

b)
$$AA^{T} = \begin{pmatrix} 6 & 3 \\ 3 & 5 \end{pmatrix}$$
, $A^{T}A = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 2 & 3 \\ 2 & 3 & 5 \end{pmatrix}$, BA^{T} n'existe pas : $(3 \times 2) \times (3 \times 2)$, $BC^{T} = \begin{pmatrix} 6 & 9 \\ 8 & 10 \\ 13 & 14 \end{pmatrix}$, $C^{T}A = \begin{pmatrix} 2 & 3 & 5 \\ 6 & 6 & 9 \end{pmatrix}$, BD^{T} n'existe pas : $(3 \times 2) \times (1 \times 3)$, $D^{T}B = \begin{pmatrix} 4 & 5 \end{pmatrix}$.

Exercice 5

- (a) Soit $A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$. Trouver (si elle existe) une matrice B de taille 2×2 non nulle telle que AB = 0. (Idée : écrire AB sous la forme ($A\mathbf{b}_1 \quad A\mathbf{b}_2$))

 Solution : On note \mathbf{b}_1 et \mathbf{b}_2 les colonnes de B : $B = (\mathbf{b}_1 \quad \mathbf{b}_2)$. On a $AB = (A\mathbf{b}_1 \quad A\mathbf{b}_2) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Ainsi, on doit chercher un vecteur non nul \mathbf{b}_1 tel que $A\mathbf{b}_1 = \mathbf{0}$. Si un tel vecteur existe, on peut poser par exemple $B = (\mathbf{b}_1 \quad \mathbf{b}_2)$ avec $\mathbf{b}_2 = \mathbf{0}$. Sinon, une telle matrice B n'existe pas.

 Soit $\mathbf{b}_1 = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$. Le système $A\mathbf{b}_1 = \mathbf{0}$ est linéaire en x_1 et x_2 avec pour matrice augmentée $\begin{pmatrix} 1 & 2 & 0 \\ 3 & 6 & 0 \end{pmatrix}$, dont la forme échelonnée réduite est $\begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Ainsi, la solution générale est $x_1 = -2x_2$, c'est-à-dire, sous forme vectorielle $\mathbf{b}_1 = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix} x_2$. Ainsi, (en fixant $x_2 = 1$) on trouve un vecteur $\mathbf{b}_1 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ tel que $A\mathbf{b}_1 = \mathbf{0}$. On peut donc proposer la matrice $B = (\mathbf{b}_1 \quad \mathbf{b}_2) = \begin{pmatrix} -2 & 0 \\ 1 & 0 \end{pmatrix}$.
- (b) Même question pour $A = \begin{pmatrix} 1 & 1 \\ 3 & 2 \end{pmatrix}$.

Solution: En résolvant $A\mathbf{b}_1 = \mathbf{0}$ pour $\mathbf{b}_1 = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ on obtient un système linéaire avec pour matrice augmentée $\begin{pmatrix} 1 & 1 & 0 \\ 3 & 2 & 0 \end{pmatrix}$. La forme échelonnée réduite est $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. Par conséquent, le système a une unique solution triviale $\mathbf{b}_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ et la matrice B telle que AB = 0 n'existe pas.

(c) Soit $A = \begin{pmatrix} 3 & -4 \\ -5 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 7 & 4 \\ 5 & k \end{pmatrix}$. Pour quelle(s) valeur(s) de $k \in \mathbb{R}$ a t-on AB = BA?

Solution: On calcule $AB = \begin{pmatrix} 1 & 12 - 4k \\ -30 & -20 + k \end{pmatrix}$, $BA = \begin{pmatrix} 1 & -24 \\ 15 - 5k & -20 + k \end{pmatrix}$.

L'équation AB = BA équivaut donc au système

$$\begin{cases} 12 - 4k &= -24 \\ -30 &= 15 - 5k, \end{cases}$$

avec pour unique solution k = 9.

(d) Trouver une matrice A non nulle telle que $A^2 = 0$.

Solution: Par exemple,
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
.

Exercice 6

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- (a) Une matrice A de taille $m \times n$ ne peut être multipliée par la gauche que par des matrices B de taille $p \times m$.
- (b) Le produit matriciel est commutatif.
- (c) Si le produit de deux matrices A et B est AB = 0, alors A = 0 ou B = 0.
- (d) $(ABC)^T = C^T B^T A^T$.

Solution : Vrai : (a) Le nombre de colonnes de A est égal au nombre de lignes de B. (d) On applique deux fois l'identité du cours : $(ABC)^T = C^T(AB)^T = C^TB^TA^T$

Faux: (b) Posons, par exemple, $A = \begin{pmatrix} 1 & A \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Il est immédiat de calculer que $A.B \neq B.A.$ (c) On calculera que $B^2 = 0$, alors que B (définie juste avant) n'est pas la matrice nulle.

Exercice 7

Soient A et B des matrices telles que le produit AB soit bien défini. Montrer que $(AB)^T = B^TA^T$.

Solution: Le produit AB est bien défini, le nombre m de colonnes de A est égal au nombre de lignes de B. En transposant, le nombre de lignes de A^T est égal au nombre de colonnes de B^T , donc le produit B^TA^T est également bien défini. On note $A = (a_{ij})$ et $B = (b_{ij})$ et on compare les éléments d'indice ij des matrices $(AB)^T$ et B^TA^T :

$$((AB)^T)_{ij} = (AB)_{ji} = \sum_{k=1}^m a_{jk} b_{ki},$$

$$(B^T A^T)_{ij} = \sum_{k=1}^m (B^T)_{ik} (A^T)_{kj} = \sum_{k=1}^m b_{ki} a_{jk},$$

on obtient les mêmes quantités, ainsi $(AB)^T = B^T A^T$.

Copyright 2012 ${\mathbb O}$ Prof. Assyr Abdulle, Prof. Simone Deparis, Dr. Christian Urech.

Informations générales, séries et corrigés : cf.

http://moodle.epfl.ch/course/view.php?id=15414

Les exercices de type vrai ou faux proviennent du livre : D.C. Lay. Algèbre linéaire : théorie, exercices et applications. De Boeck, Bruxelles, 2005.