Durée: 60 minutes

Algèbre linéaire Test intermédiaire Classe inversée Automne 2024

Réponses

Pour les questions à **choix multiple**, on comptera :

- +3 points si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs réponses,
- -1 point si la réponse est incorrecte.

Pour les questions de type vrai-faux, on comptera :

- +1 point si la réponse est correcte,
- 0 point si la question n'est pas répondue ou s'il y a plusieurs réponses,
- -1 point si la réponse est incorrecte.

Notation

- Pour une matrice A, a_{ij} désigne l'élément situé sur la ligne i et la colonne j de la matrice.
- Pour un vecteur $\vec{x} \in \mathbb{R}^n$, x_i désigne la i-ème composante de \vec{x} .
- $-I_m$ désigne la matrice identité de taille $m \times m$.
- $-\mathbb{P}_n(\mathbb{R})$ désigne l'espace vectoriel des polynômes réels de degré inférieur ou égal à n.
- $-\mathcal{M}_{m\times n}(\mathbb{R})$ désigne l'espace vectoriel des matrices de taille $m\times n$ à coefficients réels.

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'**une seule** réponse correcte par question.

Question 1: Soient

$$\mathcal{B} = \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \right\} \quad \text{et} \quad \mathcal{C} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix} \right\}$$

deux bases ordonnées de \mathbb{R}^3 . Soit P la matrice de changement de base de la base \mathcal{B} vers la base \mathcal{C} , telle que $[\vec{x}]_{\mathcal{C}} = P[\vec{x}]_{\mathcal{B}}$ pour tout $\vec{x} \in \mathbb{R}^3$. Alors la deuxième ligne de P est

Question 2: Soit $\mathcal{B} = \{2-t, t+t^2, -1+t^3, -1-t+2t^2\}$ une base ordonnée de $\mathbb{P}_3(\mathbb{R})$. La quatrième coordonnée du polynôme $p(t) = t + 2t^2 + 3t^3$ par rapport à la base \mathcal{B} est égale à

$$\square$$
 -7. \square $\frac{1}{7}$. \square 3.

Question 3: Soit $T: \mathbb{R}^2 \to \mathbb{R}^4$ l'application linéaire définie par

$$T\left(\left(\begin{array}{c} x\\y \end{array}\right)\right) = \left(\begin{array}{c} x-y\\x-y\\-5x+6y\\x+y \end{array}\right).$$

Alors

$$lacktriangledown T$$
 est injective mais pas surjective. $lacktriangledown T$ est surjective mais pas injective. $lacktriangledown T$ n'est ni injective ni surjective.

Question 4: Soit

$$A = \begin{pmatrix} 0 & 0 & 0 & 3 & 0 \\ 2 & \sqrt{3} & \pi & 3 & \sqrt{2} \\ 0 & 0 & 0 & 3 & 2 \\ 0 & 0 & \pi & 3 & \sqrt{2} \\ \sqrt{3} & 1 & \pi & 3 & \sqrt{2} \end{pmatrix}.$$

Alors

Question 5: Soit

$$A = \begin{pmatrix} 1 & 2 & 4 & 0 \\ 0 & 1 & 5 & -1 \\ 1 & -1 & 2 & 2 \\ 3 & 1 & 0 & 1 \end{pmatrix}.$$

Alors l'inverse $B = A^{-1}$ de la matrice A est tel que

Question 6: Soit W l'espace vectoriel des matrices symétriques de taille 2×2 et soit $T: \mathbb{P}_2(\mathbb{R}) \to W$ l'application linéaire définie par

$$T(a+bt+ct^2) = \begin{pmatrix} a & b-c \\ b-c & a+b+c \end{pmatrix}$$
 pour tout $a,b,c \in \mathbb{R}$.

Soient

$$\mathcal{B} = \left\{ 1, 1 - t, t + t^2 \right\} \quad \text{et} \quad \mathcal{C} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

des bases ordonnées de $\mathbb{P}_2(\mathbb{R})$ et W respectivement. La matrice A associée à T par rapport à la base \mathcal{B} de $\mathbb{P}_2(\mathbb{R})$ et la base \mathcal{C} de W, telle que $[T(p)]_{\mathcal{C}} = A[p]_{\mathcal{B}}$ pour tout $p \in \mathbb{P}_2(\mathbb{R})$, est

Question 7: Le système d'équations linéaires

$$\begin{cases} x_1 + 2x_2 + 5x_3 - 4x_4 = 0 \\ x_2 + 2x_3 + x_4 = 7 \\ x_2 + 3x_3 - 5x_4 = -4 \\ 2x_1 + 3x_2 + 4x_3 - 3x_4 = 1 \end{cases}$$

possède une solution unique telle que

Question 8: Soit t un paramètre réel. Les vecteurs

$$\vec{v}_1 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} -3 \\ 5 \\ -2 \end{pmatrix} \quad \text{et} \quad \vec{v}_3 = \begin{pmatrix} t \\ -9 \\ 8 \end{pmatrix}$$

sont linéairement dépendants si et seulement si

Deuxième partie, questions de type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours vraie** ou la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire si elle est parfois fausse).

Question 9: Soit $T: \mathbb{P}_6(\mathbb{R}) \to \mathcal{M}_{3\times 2}(\mathbb{R})$ une application linéaire. Alors il existe $p, q \in \mathbb{P}_6(\mathbb{R})$ tels que $p \neq$ et $T(p) = T(q)$.
VRAI FAUX
Question 10: Soit $\{\vec{b}_1, \dots, \vec{b}_m\}$ une base de \mathbb{R}^m . Si A est une matrice de taille $m \times n$ telle que l'équation $A\vec{x} = \vec{b}_k$ possède au moins une solution pour tout $k = 1, \dots, m$, alors $\text{Im}(A) = \mathbb{R}^m$.
VRAI FAUX
Question 11: Soit A une matrice de taille $m \times n$ avec $m < n$. Si la forme échelonnée réduite de A possèd exactement k lignes nulles, alors l'ensemble des solutions du système homogène $A\vec{x} = \vec{0}$ est un sous-espac vectoriel de \mathbb{R}^n de dimension $n - k$.
□ VRAI ■ FAUX
Question 12: Soit A une matrice de taille $n \times n$ et soit $T: \mathbb{R}^n \to \mathbb{R}^n$ l'application linéaire définie pa $T(\vec{x}) = A\vec{x}$, pour tout $\vec{x} \in \mathbb{R}^n$. Si A est telle que $A^5 = 0$, alors T est surjective.
□ VRAI ■ FAUX
Question 13: Soient V et W deux espaces vectoriels et soit $T: V \to W$ une application linéaire. Si $\dim(\operatorname{Ker} T) = \dim V$, alors $\operatorname{Im} T = \{\vec{0}_W\}$.
VRAI FAUX
Question 14: Soit q un polynôme de degré 3 quelconque. Alors l'ensemble
$\left\{p\in\mathbb{P}_{\!3}(\mathbb{R})\mid q(0)-p(0)=0\right\}$ est un sous-espace vectoriel de $\mathbb{P}_{\!3}(\mathbb{R}).$
□ VRAI ■ FAUX
Question 15: Soit $A \in \mathcal{M}_{4\times 4}(\mathbb{R})$ une matrice de rang 3. Si \vec{u} , \vec{v} , \vec{w} sont des vecteurs linéairement indépendants dans \mathbb{R}^4 , alors $A\vec{u}$, $A\vec{v}$, $A\vec{w}$ sont linéairement indépendants dans \mathbb{R}^4 .
☐ VRAI ■ FAUX
Question 16: Soit W le sous-espace vectoriel de $\mathbb{P}_5(\mathbb{R})$ engendré par $p_1, p_2, p_3, p_4 \in \mathbb{P}_5(\mathbb{R})$. Si $\dim(W) = 4$ alors il existe deux polynômes $p_5, p_6 \in \mathbb{P}_5(\mathbb{R})$ tels que l'ensemble $\mathcal{B} = \{p_1, p_2, p_3, p_4, p_5, p_6\}$ est une bas de $\mathbb{P}_5(\mathbb{R})$.
VRAI FAUX