Algèbre linéaire SVD

Simone Deparis

EPFL Lausanne - MATH

Semaine 14

Séance de Q&A en janvier

L'examen aura lieu lundi 20 janvier. Quand aimeriez vous avoir une séance de Q&A?

- A. Mercredi 15 janvier 16h15-18h00.
- B. Vendredi 17 janvier 14h15-16h00.

Il faudra soumettre les questions 24 heures avant sur Ed. Je ne répondrai pas à d'autres questions!

Évaluation du cours : à la fin de l'examen sur papier.

Chapitre 10 : Matrices orthogonales, matrices symétriques

Calculs à savoir faire :

- 1 Calculer avec des matrices symétriques et orthogonaux.
- Diagonaliser orthogonalement une matrice symétrique.
- 3 Calculer les valeurs singulières d'une matrice donnée.
- 4 Calculer la SVD d'une marice donnée.

10.10 Valeurs singulières l

Soit A une matrice $m \times n$.

On appelle valeurs singulières de A les racines carrées des valeurs propres de la matrice A^TA .

On les note $\sigma_1, \ldots, \sigma_n$, de telle sorte que $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n \geq 0$.

Ainsi, il existe une base $(\vec{v}_1, \dots, \vec{v}_n)$ de \mathbb{R}^n composée de vecteurs propres de A^TA avec valeurs propres correspondantes $\sigma_1^2 = \lambda_1 \geq \sigma_2^2 = \lambda_2 \geq \dots \geq \sigma_n^2 = \lambda_n \geq 0$,.

10.11 Valeurs singulières, théorème fondamental

Théorème

Soient A une matrice $m \times n$ et $\sigma_1 \ge \ldots \ge \sigma_n \ge 0$ les valeurs singulières de A.

Soit $(\vec{v}_1, \dots, \vec{v}_n)$ une base orthonormée de \mathbb{R}^n constituée de vecteurs propres de $A^T A$ associés aux valeurs propres $\sigma_1^2, \dots, \sigma_n^2$.

Supposons que A admette r valeurs singulières non-nulles. Alors

- $(A\vec{v}_1, \ldots, A\vec{v}_r)$ est une base orthogonale de Col(A).
- \blacksquare rang(A) = r.
- \blacksquare $(\frac{A\vec{v}_1}{\sigma_1},\ldots,\frac{A\vec{v}_r}{\sigma_r})$ est une base orthonormée de $\operatorname{Col}(A)$.

10.12 Décomposition en valeurs singulières l

Soit A une matrice $m \times n$. On cherche des matrices

- $\blacksquare U$ orthogonale $m \times m$,
- lacksquare V orthogonale $n \times n$ et
- Σ diagonale, avec sur la diagonale les *valeurs singulières* de A $\sigma_1 \geq \ldots \geq \sigma_n \geq 0$,

telles que $A = U\Sigma V^T$.

On appelle ceci la $D\acute{e}composition$ en valeurs singulières de A.

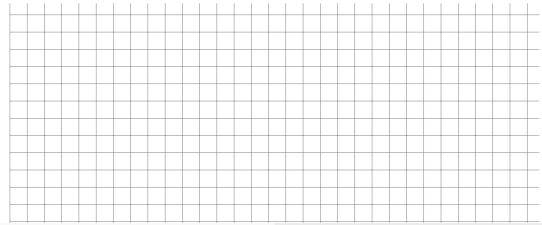
10.13 Décompositon en valeurs singulières, méthode

- Diagonaliser A^TA en base orthonormée : $A^TA = PDP^T$ avec
 - les valeurs propres $\lambda_1 \geq \geq \lambda_n$ sur la diagonale de D,
 - $lackbox{ }P$ orthogonale : ses colonnes $\vec{v}_1,...,\vec{v}_n$ sont orthonormées;
- Définir $\sigma_k = \sqrt{\lambda_k}$ pour k=1,...,n, ainsi qu'identifier le plus grand r tel que $\sigma_r > 0$;
- Définir Σ comme matrice $m \times n$ avec les valeurs σ_k en position (k, k), pour k = 1, ..., r, et 0 ailleurs;
- $(\frac{A\vec{v}_1}{\sigma_1}, \dots, \frac{A\vec{v}_r}{\sigma_r}) = (\vec{u}_1, \dots, \vec{u}_r)$ est une base orthonormée de $\operatorname{Col}(A) \subset \mathbb{R}^m$. Compléter cette base afin d'avoir une base $(\vec{u}_1, \dots, \vec{u}_m)$ orthonormée de \mathbb{R}^m .
- Définir V = P et $U = (\vec{u}_1....\vec{u}_m)$.

Serie 14, Ex 7

Calculer les valeurs singulières de la matrice

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 2 \\ 0 & -2 \end{pmatrix}$$

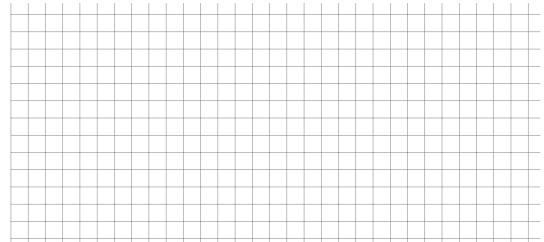


Serie 14, Ex 7, solution S. Deparis, SCI-SB-SD EPFL 9 / 78

Serie 14, Ex 8

Calculer les valeurs singulières de la matrice

$$A = \begin{pmatrix} 0 & 1 & 2 & -1 \\ 1 & 2 & 0 & 1 \end{pmatrix}$$

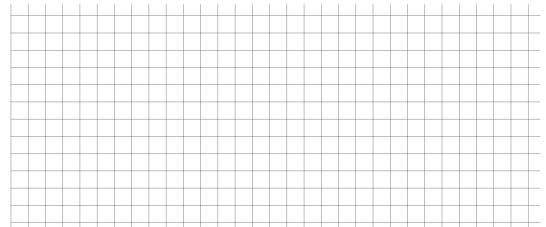


Serie 14, Ex 8, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 11 / 78

Serie 14, Ex 9

Calculer une SVD de la matrice suivante :

$$A = \begin{pmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{pmatrix}$$



Serie 14, Ex 9, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 13 / 78

Serie 14, Ex 10

Calculer une SVD de la matrice suivante :

$$A = \begin{pmatrix} -3 & 0 \\ 0 & -1 \end{pmatrix}$$

Serie 14, Ex 10, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 15 / 78

Serie 14, Ex 11 (question ouverte janvier 2024) I

Soit A une matrice et soient $\vec{w_1}, \vec{w_2}$ deux vecteurs propres de la matrice A^TA , tels que

$$\vec{w}_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \ \vec{w}_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \ A\vec{w}_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \ A\vec{w}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

Utiliser ces informations afin de trouver des matrices U, Σ et V telles que A possède une décomposition en valeurs singulières de la forme

$$A = U\Sigma V^T.$$

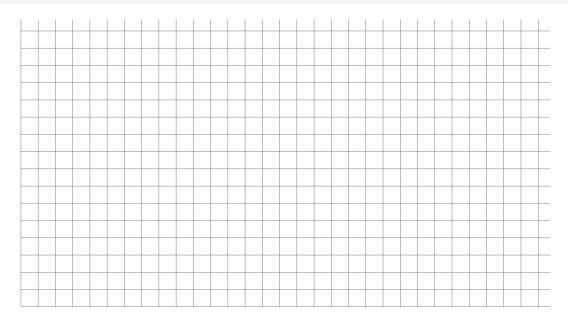
Démarche proposée (à lire si vous êtes en difficulté) :

 \blacksquare d'abord déduisez le tailles des matrices A, U, Σ et V;

Serie 14, Ex 11 (question ouverte janvier 2024) II

- lacksquare normalisez les vecteurs $ec{w}_1$ et $ec{w}_2$, on obtient $ec{v}_1$ et $ec{v}_2$;
- \blacksquare calculez $A\vec{v_1}$ et $A\vec{v_2}$;
- lacktriangle calculez les valeurs singulières et définissez Σ ;
- complétez \vec{v}_1 et \vec{v}_2 en une base de \mathbb{R}^4 et assurez vous d'obtenir une base orthonormée en utilisant la méthode de Gram-Schmidt;
- lacktriangle définissez V en utilisant $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$;
- lacksquare normalisez $A \vec{v}_1$ et $A \vec{v}_2$ et utilisez-les pour définir U.

Serie 14, Ex 11 (question ouverte janvier 2024) III



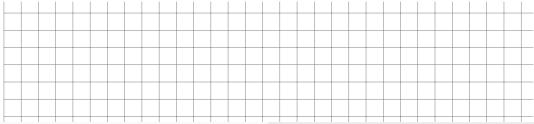
Serie 14, Ex 11 (question ouverte janvier 2024) IV

Serie 14, Ex 11 (question ouverte janvier 2024), solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 20 / 78

Serie 14, Ex 12

Parmi les affirmation suivantes, lesquelles sont toujours vraies?

- I Soit A une matrice. Alors AA^T et A^TA ont les mêmes valeurs singulières.
- 2 Une matrice A de taille $n \times n$ est inversible si et seulement si 0 n'est pas valeur singulière de A.
- f 3 Soit A une matrice carrée. Alors toutes les valeurs propres de A sont aussi des valeurs singulières de A.
- 4 Soit A une matrice et soit $A=U\Sigma V^T$ une SVD de A. Alors $V\Sigma U^T$ est une SVD de A^T .
- Soit A une matrice de taille 3×3 avec valeurs singulières 1,3 et 5. Alors le déterminant de A est 15.



Serie 14, Ex 12, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 22 / 78

Devoirs pour jeudi :

- Réviser le matériel des chapitres 5-7.
- Faire la partie commune de l'examen de 2016 (144 minutes).
- Indiquer sur le questionnaire de Moodle quelle partie du cours vous pose encore des difficultés.

Algèbre linéaire Revisions

Simone Deparis

EPFL Lausanne - MATH

Semaine 14

Examen

- environ 55-60% QCM
- environ 15-20% vrai/faux
- environ 20-30% questions ouvertes (avec des petites preuves à faire, et/ou des questions calculatoires)

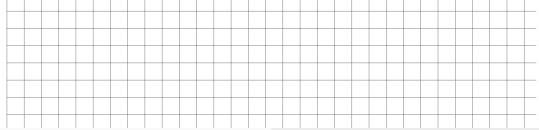
Exercise 1

Pour quels nombres réels b est-il vrai que le déterminant de la matrice

$$\left(\begin{array}{ccc}
2b & 6 & 4 \\
0 & b-1 & 1 \\
-b & 2b-5 & 5
\end{array}\right)$$

est égal à 0?

- $\square \quad 0 \text{ et } 1$
- □ aucun
- \square 0 et -1
- \Box -1 et 1



Exercise 1, solution Algèbre linéaire 27 / 78 S. Deparis, SCI-SB-SD EPFL

Exercise 2

On considère l'espace vectoriel formé par les matrices de taille 3×3 de la forme

$$\left(\begin{array}{ccc} 0 & a & 0 \\ b & 0 & c \\ 0 & d & 0 \end{array}\right) \text{ où } a,b,c,d \in \mathbb{R}. \text{ Soit } h \text{ un paramètre réel. Alors les matrices}$$

$$\left(\begin{array}{ccc} 0 & 1 & 0 \\ h & 0 & 1 \\ 0 & h & 0 \end{array}\right), \left(\begin{array}{ccc} 0 & h & 0 \\ 4 & 0 & h \\ 0 & 4 & 0 \end{array}\right), \left(\begin{array}{ccc} 0 & 1 & 0 \\ 2 & 0 & 3h \\ 0 & 4h & 0 \end{array}\right)$$

sont linéairement indépendantes

- \square si et seulement si $h \neq 2, h \neq -2, h \neq 1/3$ et $h \neq 1/2$.
- \square si et seulement si $h \neq 1/2$ et $h \neq 1/3$.
- \square pour toute valeur réelle de h.
- \square si et seulement si $h \neq 2$ et $h \neq -2$.

Exercise 2, solution Algèbre linéaire 29 / 78 S. Deparis, SCI-SB-SD EPFL

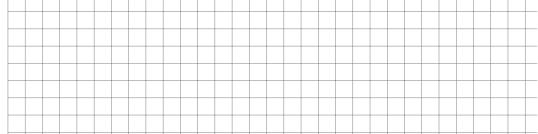
Exercise 3

Soit

$$A = \left(\begin{array}{rrr} 0 & 0 & -3\\ 3 & 2 & 0\\ -1 & \frac{1}{3} & 1 \end{array}\right).$$

Si $B = A^{-1}$, alors l'élément b_{12} de B est égal à

- \Box $-\frac{2}{3}$.
- $\frac{1}{9}$.
- \Box $-\frac{1}{9}$.
- \Box $\frac{1}{3}$.



Exercise 3, solution Algèbre linéaire S. Deparis, SCI-SB-SD EPFL 31 / 78

Exercise 4

Soit

$$A = \left(\begin{array}{ccc} 2 & 4 & 4 \\ 1 & 3 & 1 \\ 1 & 5 & 6 \end{array}\right).$$

Si A=LU est une factorisation LU de A (L est une matrice triangulaire inférieure dont les éléments diagonaux sont égaux à 1 et U est une matrice triangulaire supérieure), alors l'élément l_{32} de L est

- \square 1/2.
- $\Box \quad -3/2.$
- \square 3/2.
- \square 3.

Exercise 4, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 33 / 78

Exercise 5

Soient
$$A = \begin{pmatrix} 1 & 0 \\ 3 & 5 \\ 5 & 4 \end{pmatrix}$$
 et $\vec{b} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$. Alors la solution au sens des moindres

carrés
$$\hat{\vec{x}}=\begin{pmatrix}\hat{x}_1\\\hat{x}_2\end{pmatrix}$$
 de l'équation $A\vec{x}=\vec{b}$ satisfait

- \Box $\hat{x}_2 = -35/6$.
- $\square \quad \widehat{x}_2 = 41/6.$
- $\square \quad \widehat{x}_2 = -5/6.$
- $\square \quad \widehat{x}_2 = 1/6.$

Exercise 5, solution S. Deparis, SCI-SB-SD EPFL

Exercise 6

La dimension du sous-espace vectoriel de \mathbb{R}^4 donné par

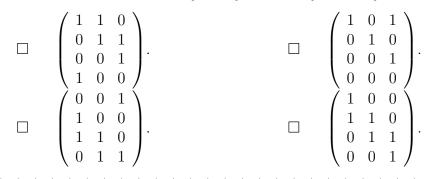
$$V = \left\{ \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} \in \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 1 \end{pmatrix} \right\} \text{ tels que } v_4 = 0 \right\}$$

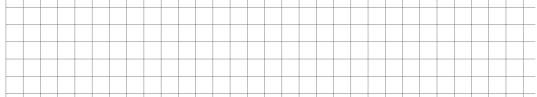
est

- □ 4.
- □ 3
- \Box 1
- \square 2

Exercise 6, solution Algèbre linéaire S. Deparis, SCI-SB-SD EPFL 37 / 78

Soit $T: \mathbb{P}_2 \to \mathbb{P}_3$ l'application linéaire définie par T(p(t)) = (t+1)p(t). Alors la matrice de T dans les bases $\{1, t, t^2\}$ de \mathbb{P}_2 et $\{1, t, t^2, t^3\}$ de \mathbb{P}_3 est





Exercise 7, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 39 / 78

Soient l'espace vectoriel \mathbb{R}^3 muni du produit scalaire euclidien et le sous-espace vectoriel

$$V = \operatorname{Span} \left\{ \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix} \right\}.$$

Alors, la projection orthogonale du vecteur $\begin{pmatrix} 6 \\ 21 \\ 3 \end{pmatrix}$ sur V est

- $\square \qquad \left(\begin{array}{c} 4\\8\\7 \end{array}\right).$
- $\square \quad \begin{pmatrix} 2 \\ 16 \\ 11 \end{pmatrix}.$
 - \Box $\begin{pmatrix} 10 \\ 26 \end{pmatrix}$

Exercise 8, solution 41 / 78 S. Deparis, SCI-SB-SD EPFL Algèbre linéaire

Soit un paramètre $b \in \mathbb{R}$. Alors le polynôme $q(t) = bt - t^2$ appartient au sous-espace vectoriel de \mathbb{P}_2 engendré par $p_1(t) = 1 + t + t^2$ et $p_2(t) = 2 - t + 3t^2$ lorsque

- $\square \quad b=1.$
- $\square \quad b = -1.$
- $\Box \quad b = -3.$
- $\square \quad b=3.$

Exercise 9, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 43 / 78

Soient

$$A = \begin{pmatrix} 1 & 2 & 1 \\ -3 & -5 & -1 \\ -2 & -4 & -2 \end{pmatrix} \qquad \text{et} \qquad \vec{b} = \begin{pmatrix} -2 \\ h^3 - h \\ h^3 - 4h + 4 \end{pmatrix}$$

où $h \in \mathbb{R}$ est un paramètre. Alors l'équation matricielle

$$A\vec{x} = \vec{b}$$

possède une infinité de solutions

- pour h = -2, h = 0 et h = 2.
- pour h = -2. h = 1 et h = 2.
- pour h = -1. h = 0 et h = 1.
- pour h = -1, h = -1/2 et h = 1/2.

Exercise 10, solution S. Deparis, SCI-SB-SD EPFL

Soit A une matrice de taille 4×5 telle que l'équation matricielle $A\vec{x}=\vec{0}$ possède exactement deux variables libres. Quelle est la dimension du sous-espace vectoriel

$$W = \left\{ \vec{b} \in \mathbb{R}^4 \text{ tels que } A\vec{x} = \vec{b} \text{ est compatible} \right\}$$
 ?

- \Box 0
- \square 2

Exercise 11, solution

Soient

$$A = \begin{pmatrix} -1 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 2 & 2 & 1 & -1 \\ -2 & -2 & -1 & 1 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} -1 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \\ 2 & 3 & 2 & -2 \\ -2 & -2 & -1 & 1 \end{pmatrix}.$$

Alors

- \square dim(Ker A) = 2 et dim(Ker B) = 2.
- \square dim(Ker A) \neq 2 et dim(Ker B) \neq 2.
- $\square \quad \dim(\operatorname{Ker} A) = 2 \text{ et } \dim(\operatorname{Ker} B) \neq 2.$

Exercise 12, solution

Soit $T: \mathbb{R}^4 \to \mathbb{R}^2$ l'application linéaire définie par

$$T\left(\left(\begin{array}{c} x_1\\ x_2\\ x_3\\ x_4 \end{array}\right)\right) = \left(\begin{array}{c} 2x_1 - 3x_2\\ x_3 + x_1 + x_4 \end{array}\right).$$

Alors la matrice de T dans les bases

$$\left\{ \begin{pmatrix} 2\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\2\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\2 \end{pmatrix} \right\} \text{ et } \left\{ \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 2\\1 \end{pmatrix} \right\}$$

est

$$\Box \qquad \begin{pmatrix}
0 & 1 & 2/3 & 2/3 \\
1 & -2 & -1/3 & -1/3
\end{pmatrix}.$$

$$\Box \qquad \begin{pmatrix}
4 & -4 & -3 & 0 \\
2 & 1 & 2 & 3
\end{pmatrix}.$$

Exercise 13, solution Algèbre linéaire 51 / 78 S. Deparis, SCI-SB-SD EPFL

Soit la matrice

$$A = \left(\begin{array}{rrr} 1 & 3 & 3 \\ 3 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right).$$

Alors les valeurs propres de A sont

- \Box -2 et 3.
- \square 3 et 4.
- \Box -5, -1 et 1.
- \Box -2 et 7.

Exercise 14, solution S. Deparis, SCI-SB-SD EPFL

Quel énoncé est vrai pour toute matrice A de taille $n \times n$ et tout vecteur $\vec{b} \in \mathbb{R}^n$? L'équation $A\vec{x} = \vec{b}$ a au plus une solution. L'équation $A\vec{x} = \vec{b}$ a au moins une solution. L'équation $A\vec{x} = \vec{b}$ a au plus une solution au sens des moindres carrés. L'équation $A\vec{x} = \vec{b}$ a au moins une solution au sens des moindres carrés. S. Deparis, SCI-SB-SD EPFL Algèbre linéaire

Exercise 15, solution

Soit $\{\vec{e}_1,\ldots,\vec{e}_4\}$ la base canonique de \mathbb{R}^4 . Soit $T:\mathbb{R}^4\to\mathbb{P}_4$ une application linéaire. Si le rang de T est égal à 4, alors l'ensemble $\{T(\vec{e}_1+\vec{e}_2),T(2\vec{e}_2),T(\vec{e}_3+\vec{e}_4),T(\vec{e}_4+\vec{e}_1)\}$

- \square est une base de \mathbb{P}_4 .
 - n'est pas linéairement indépendante.
- \square ne peut pas être complétée en une base de \mathbb{P}_4 .
- \square peut être complétée en une base de \mathbb{P}_4 .

Exercise 16, solution S. Deparis, SCI-SB-SD EPFL

Soient .	A et	B c	leux	ma	tric	es	dia	igoi	nal	isa	bles	de	ta	ille	n	\times	n t	elle	s q	ue	A =	$\neq I$	3.		
Alors																									
	AB est toujours diagonalisable.																								
	AB n'est jamais diagonalisable.																								
	AB est diagonalisable si A et B ont les mêmes valeurs propres.																								
\square AB est diagonalisable si A et B ont les mêmes vecteurs propres.																									
																						1		_	
																						1		_	
								_										_	_		_	1		_	
																			_		-	-		_	
									_															_	
								_											_		+	-		_	
																						_		_	
								_	+										+		+	-		_	
																								_	
									+												+	-		_	
	S. Deparis, SCI-SB-SD EPFL										, i							,		Al	gèbre	linéa	ire	58 / 7	8

Exercise 17, solution

Soient $m \geq 2$, A une matrice de taille $m \times (m-1)$ et $\vec{b} \in \mathbb{R}^m$ un vecteur non nul. Alors l'ensemble des solutions de $A\vec{x} = \vec{b}$ peut être l'ensemble vide. un sous-espace vectoriel de \mathbb{R}^{m-1} de dimension 1. un sous-espace vectoriel de \mathbb{R}^{m-1} de dimension m-2. égal à \mathbb{R}^{m-1} .

Exercise 18, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 61 / 78

Parmi les formules suivantes laquelle est toujours vraie pour tout choix de deux matrices inversibles A et B de taille $n \times n$?

- \Box $(AB)^{-1} = A^{-1}B^{-1}$
- $\Box \quad (A+B^T)^{-1} = A^{-1} + (B^{-1})^T$
- $\Box \quad (2A)^{-1} = 2^{-n}A^{-1}$
- $\Box (AB^T)^{-1} = (B^{-1})^T A^{-1}$

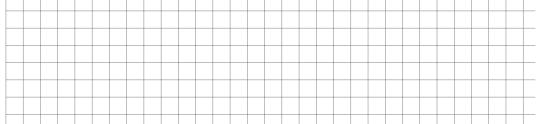
Exercise 19, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 63 / 78

Soit
$$A$$
 la matrice $\begin{pmatrix} -1/2 & 0 & -\sqrt{3}/2 \\ 0 & 1 & 0 \\ \sqrt{3}/2 & 0 & -1/2 \end{pmatrix}$. Parmi les affirmations (a) $\det A=1$ (b) $AA^T=I_3$ (c) $A^3=I_3$

(a)
$$\det A = 1$$
 (b) $AA^T = I_3$ (c)

lesquelles sont vraies?

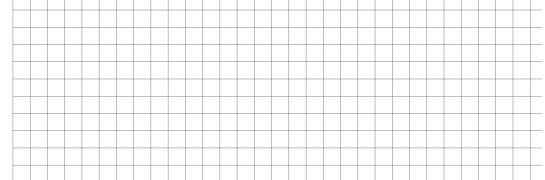
- seulement (a) et (c)
- seulement (b)
- □ seulement (a) et (b)
- ☐ (a), (b) et (c)



Exercise 20, solution S. Deparis, SCI-SB-SD EPFL

Soient a,b deux nombres réels tels que a+b=1 et $A=\begin{pmatrix} 4a & 2 \\ 2 & 4b \end{pmatrix}$ une matrice non inversible. Laquelle des affirmations suivantes doit être vraie?

- le polynôme caractéristique de A a une seule racine réelle
- \Box det A = -4
- \square A est une matrice de changement de base
- \square le polynôme caractéristique de A a deux racines réelles distinctes



Exercise 21, solution

Soit U une matrice de taille $n \times p$ dont les colonnes sont orthonormées et soit $W = \operatorname{Col}(U)$. Soit proj_W la projection orthogonale sur W. Alors, pour tout vecteur $\vec{x} \in \mathbb{R}^p$ et tout vecteur $\vec{y} \in \mathbb{R}^n$, on a

- $\Box \quad U^T U \vec{x} = \vec{x} \qquad \text{et} \quad U U^T \vec{y} = \vec{0}.$
- $\square \quad U^T U \vec{x} = \mathrm{proj}_W \vec{x} \quad \text{ et } \quad U U^T \vec{y} = \mathrm{proj}_W \vec{y}.$
- $\Box \quad U^T U \vec{x} = \vec{x} \qquad \text{et} \quad U U^T \vec{y} = \vec{y}.$
- $\square \quad U^T U \vec{x} = \vec{x} \qquad \qquad \text{et} \quad U U^T \vec{y} = \text{proj}_W \vec{y}.$

Exercise 22, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 69 / 78

Soient les sous-ensembles de \mathbb{R}^2 suivants :

(a) $\left\{ \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \right\}$

- (d) $\left\{ \begin{pmatrix} 0 \\ a^2 \end{pmatrix} \text{ tels que } a \in \mathbb{R} \right\}$
- (b) $\left\{ \begin{pmatrix} a \\ \sin a \end{pmatrix} \text{ tels que } a \in \mathbb{R} \right\}$
- (e) $\left\{ \begin{pmatrix} -a/2 \\ -10a \end{pmatrix} \text{ tels que } a \in \mathbb{R} \right\}$

(c) $\left\{ \begin{pmatrix} 0 \\ a \end{pmatrix} \text{ tels que } a \in \mathbb{R} \right\}$

Lesquels sont des sous-espaces vectoriels?

- \Box tous sauf (d)
- □ tous sauf (b)
- □ seulement (c) et (e)
- □ seulement (a), (c) et (e)

Exercise 23, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 71 / 78

néo [Soient A et B deux matrices de taille $n \times n$ semblables. Quel énoncé n'est pas nécessairement vrai? \square Les polynômes caractéristiques de A et de B sont les mêmes. \square A est diagonalisable si et seulement si B est diagonalisable. \square Les rangs de A et de B sont les mêmes. \square A et B ont les mêmes sous-espaces propres.																						
																							_
																							_
																							_
																							_
																							_
																							_
																							_

Exercise 24, solution

Soit

$$A = \left(\begin{array}{cccc} 0 & 1 & 2 & -1 \\ 1 & 2 & 0 & 1 \\ 2 & 1 & 0 & 1 \end{array}\right)$$

Trouvez une base de $\operatorname{Col}(A)$, de $\ker(A)$ et de $\operatorname{Lgn}(A)$.

Calculer une SVD de la matrice suivante

$$A = \begin{pmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{pmatrix}$$

Calculer une SVD de la matrice suivante

$$A = \begin{pmatrix} -2 & 0 \\ 0 & 0 \end{pmatrix}$$

Calculer une SVD de la matrice suivante

$$A = \begin{pmatrix} 3 & -3 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}$$

77 / 78

Merci beaucoup pour le semestre et bonnes fêtes!!