Algèbre linéaire Chapitre 10 : Matrices orthogonales, matrices symétriques

Simone Deparis

EPFL Lausanne - MATH

Semaine 13

Chapitre 9 : Produits scalaires et espaces euclidiens

À savoir faire :

- 1 Calculs avec produits scalaires et normes.
- 2 Déterminer si un ensemble de vecteurs est orthogonal ou orthonormal.
- 3 Trouver une base orthogonale à partir d'un ensemble génératrice donné en utilisant le procédé de Gram-Schmidt.
- 4 Trouver l'orthogonal à un sous-espace vectoriel $W \subset \mathbb{R}^n$.
- **5** Calculer la projection orthogonale d'un vecteur sur un sous-espace vectoriel.
- 6 Trouver les solutions au sens des moindres carrées d'un système d'équations linéaires.
- **7** Calculer la droite de régression à partir d'un ensemble de points dans \mathbb{R}^n .
- 8 Calculer la décomposition QR d'une matrice donnée.

10.1 Matrices et transformations orthogonales

Définition

Soient $V=\mathbb{R}^n$ muni du produit scalaire usuel et A une matrice $n\times n$. On dit que A est orthogonale si $||A\vec{x}||=||\vec{x}||$ pour tout $\vec{x}\in\mathbb{R}^n$.

Soit A $n \times n$ orthogonale. Alors A est inversible.

10.2 Matrices orthogonales, équivalences

Proposition

Soient $V = \mathbb{R}^n$ muni du produit scalaire usuel et A une matrice $n \times n$. Alors les conditions suivantes sont équivalentes.

- \blacksquare A est othrogonale.
- $\blacksquare ||A\vec{x}|| = ||\vec{x}||$ pour tout $\vec{x} \in \mathbb{R}^n$.
- $\blacksquare \langle A\vec{x}, A\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$ pour tout $\vec{x}, \vec{y} \in \mathbb{R}^n$.
- $AA^T = I_n = A^T A, \text{ i.e. } A^{-1} = A^T.$
- lacktriangle Les lignes de A forment une base orthonormée de V.
- Les colonnes de A (vues comme vecteurs de \mathbb{R}^n) forment une base orthonormée de V.

Aussi, si A est orthogonale, alors $\det A = \pm 1$.

10.3 Changement de base orthogonal

Définition

Soit A une matrice $n \times n$. On dit que A est orthogalement diagonalisable ou orthodiagonalisable s'il existe une matrice orthogonale P telle que $D = P^{-1}AP$ soit diagonale.

Puisque P est orthogonale, $P^{-1} = P^T$ et $A = PDP^{-1} = PDP^T$.

10.4 Matrices symétriques, valeurs propres, vecteurs propres, théorème spectral

Soit A une matrice $n \times n$.

Proposition

Soient A symétrique et $\lambda \neq \mu$ deux valeurs propres distinctes pour A. Si $u \in E_{\lambda}$ et $v \in E_{\mu}$, alors u et v sont orthogonaux.

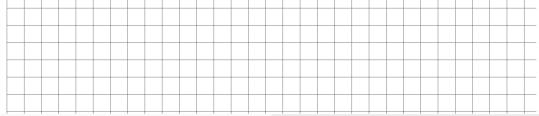
Proposition

A est orthogonalement diagonalisable $\Leftrightarrow A$ est symétrique.

- Soit A symétrique. Alors il est possible de factoriser $c_A(t)$ en un produit de facteurs linéaires sur \mathbb{R} .
- Pour chaque valeur propre $\lambda \in \mathbb{R}$ de A, la dimension de l'espace propre E_{λ} est égale à la multiplicité algébrique de λ comme racine de $c_A(t)$.

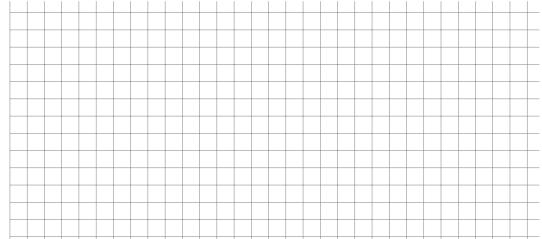
Parmis les affirmations suivantes, lequelles sont toujours vraies?

- 1 Une matrice diagonalisable est symétrique.
- Soit A une matrice $n \times n$ telle que $A^T = A$ et soient $u, v \in \mathbb{R}^n$ tels que Au = 3u et Av = 4v alors $u \cdot v = 0$.
- 3 Une matrice orthogonale est orthodiagonalisable.
- 4 Soit A une matrice. Alors, AA^T est diagonalisable.
- f Si~A~ est une matrice orthodiagonalisable inversible, alors $A^{-1}~$ est aussi orthodiagonalisable.
- 6 Soit A une matrice symétrique et B une matrice inversible telle que $B^{-1}AB$ est diagonale. Alors B est orthogonale.



Série 13, Ex 8, solution Algèbre linéaire S. Deparis, SCI-SB-SD EPFL 8 / 21

Soit
$$A=\begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 . Trouver une matrice orthogonale P et une matrice diagonale D telle que $P^TAP=D$.



Série 13, Ex 9, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 10 / 21

Soit
$$A = \begin{pmatrix} 7 & -24 \\ -24 & -7 \end{pmatrix}$$
. Si $A = PDP^T$ pour une matrice diagonale D , alors P peut s'écrire comme

A.
$$P = \begin{pmatrix} 4/5 & 3/5 \\ 3/5 & -4/5 \end{pmatrix}$$

B.
$$P = \begin{pmatrix} 3/5 & 4/5 \\ 4/5 & -3/5 \end{pmatrix}$$

C.
$$P = \begin{pmatrix} 5/13 & 12/13 \\ 12/13 & -5/13 \end{pmatrix}$$

B.
$$P = \begin{pmatrix} 3/5 & 4/5 \\ 4/5 & -3/5 \end{pmatrix}$$

C. $P = \begin{pmatrix} 5/13 & 12/13 \\ 12/13 & -5/13 \end{pmatrix}$
D. $P = \begin{pmatrix} 12/13 & 5/13 \\ 5/13 & -12/13 \end{pmatrix}$

Série 13, Ex 10, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 12 / 21

Devoirs pour jeudi :

■ MOOC 10.0-10.5 : Regarder les vidéos et faire les petits quiz après les vidéos.

Algèbre linéaire Chapitre 10 : Matrices orthogonales, matrices symétriques

Simone Deparis

EPFL Lausanne - MATH

Semaine 13

10.5 Méthode : diagonalisation d'une matrice symétrique par une matrice orthogonale

Soit A une matrice $n \times n$ symétrique.

- Déterminer le polynôme caractéristique $c_A(x)$ de A.
- Trouver toutes les racines $\lambda_1, \ldots, \lambda_r \in \mathbb{R}$ distinctes de $c_A(x)$ telles que

$$c_A(x) = (-1)^n (x - \lambda_1)^{m_1} \cdots (x - \lambda_r)^{m_r}.$$

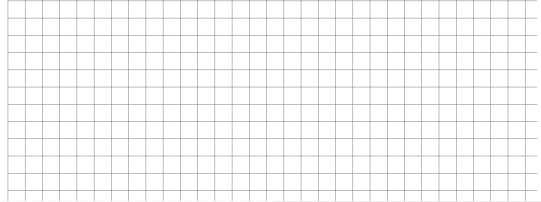
- Pour chaque $1 \le i \le r$, déterminer une base \mathscr{B}_i de E_{λ_i} .
- Pour chaque $1 \le i \le r$, utiliser le procédé de Gram-Schmidt afin de trouver une base *orthonormée* \mathscr{B}'_i de E_{λ_i} .
- La base $\mathscr{B}' = \mathscr{B}'_1 \cup \ldots \cup \mathscr{B}'_r$ est une base orthonormée de $V = \mathbb{R}^n$.
- La matrice P dont les colonnes sont les vecteurs de la base \mathscr{B}' est orthogonale et P^TAP est diagonale.

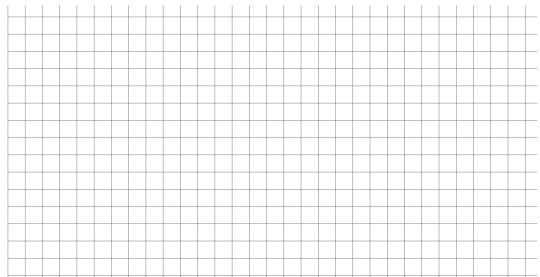
Décomposition spectrale

Exercice:

Soit A une matrice symétrique de taille $n \times n$. Alors il existe un ensemble de vecteurs propres de A orthonormée $\{u_1,\ldots,u_n\}$ avec comme valeurs propres réels $\lambda_1,\ldots,\lambda_n\in\mathbb{R}$ tel que

$$A = \lambda u_1 u_1^T + \dots + \lambda_n u_n u_n^T.$$





Série 13, Ex 11, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 18 / 21

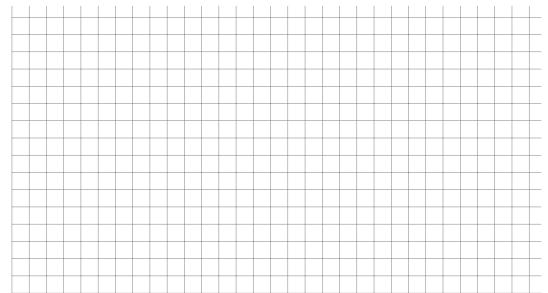
Parmis les affirmations suivantes, lequelles sont toujours vraies?

- I Soit A une matrice $n \times m$. Alors A^TA est inversible si et seulement si les colonnes de A sont linéairement indépendantes.
- 2 Une matrice A est symétrique si et seulement si A^2 est symétrique.

Série 13, Ex 12, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 20 / 21

Orthodiagolaser

Orthodiagonaliser les matrices de l'excercice 1.b) de la série 13



Devoirs pour mardi :

- MOOC 10.10-10.14 : Regarder les vidéos et faire les petits quiz après les vidéos.
- MOOC Faire quelques exercices.