Algèbre linéaire

Chapitre 9 : Produits scalaires et espaces euclidiens

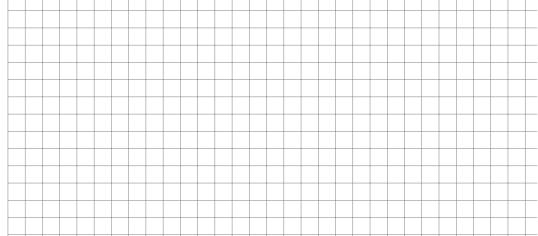
Simone Deparis

EPFL Lausanne – MATH

Semaine 12

Soient
$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $v = \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix}$. Soit $W = \text{Vect}\{u_1, u_2\}$. Calculer la

décomposition $v = z + p_W(v)$, où $z \in W^{\perp}$.

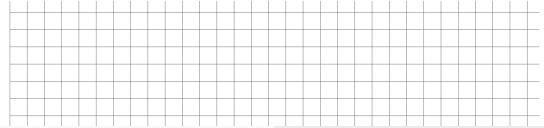


Série 12, Ex 11, solution Algèbre linéaire S. Deparis, SCI-SB-SD EPFL 3 / 33

Soient
$$v = \begin{pmatrix} 0 \\ 9 \\ 0 \\ -18 \end{pmatrix}$$
 et $W = \operatorname{Vect} \left\{ \begin{pmatrix} 2 \\ -2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 4 \\ -4 \\ 6 \\ 2 \end{pmatrix} \right\}.$

Alors, le projeté orthogonal (par rapport au produit scalaire euclidien) de v sur W est

[A.]
$$\begin{pmatrix} -3 \\ 3 \\ 4 \\ -1 \end{pmatrix}$$
 [B.] $\begin{pmatrix} -12 \\ 12 \\ -6 \\ -6 \end{pmatrix}$ [C.] $\begin{pmatrix} 8 \\ 1 \\ 0 \\ -14 \end{pmatrix}$ [D.] $\begin{pmatrix} -8 \\ 8 \\ 0 \\ -4 \end{pmatrix}$



Série 12, Ex 12, solution Algèbre linéaire S. Deparis, SCI-SB-SD EPFL 5 / 33

9.12 Solution au sens des moindres carrés

Définition

Soient $A \in M_{m \times n}(\mathbb{R})$, $b \in M_{m \times 1}(\mathbb{R})$ et $X = (x_1, \dots, x_n)^T$. Aussi, désignons par $\phi : \mathbb{R}^n \to \mathbb{R}^m$ l'application linéaire associée à A. Une solution du système AX = b au sens des moindres carrés est une solution du système

$$AX = \operatorname{proj}_{\operatorname{im}(\phi)} b.$$

Théorème

Soient $A \in M_{m \times n}(\mathbb{R})$, $b \in M_{m \times 1}(\mathbb{R})$ et $X = (x_1, \dots, x_n)^T$. Alors une solution du système AX = b au sens des moindres carrés est une solution du système $A^TAX = A^Tb$.

Calculer la droite qui approxime le mieux au sens des moindres carrés les points (-1,3),(1,0),(0,3).

Par où passe cette droite en x = -1, 1 et 0?



Série 12, Ex 13, solution Algèbre linéaire S. Deparis, SCI-SB-SD EPFL 8 / 33

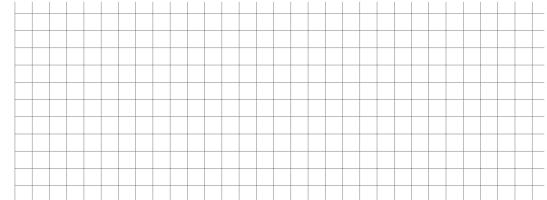
Soient
$$A=\begin{pmatrix}1&0\\3&5\\5&4\end{pmatrix}$$
 et $b=\begin{pmatrix}1\\-2\\0\end{pmatrix}$. Alors la solution au sens des moindres

carrés
$$\hat{x}=\begin{pmatrix}\hat{x}_1\\\hat{x}_2\end{pmatrix}$$
 de l'équation $Ax=b$ satisfait [A.] $\hat{x}_2=1/6$ [B.] $\hat{x}_2=-35/6$ [C.] $\hat{x}_2=41/6$ [D.] $\hat{x}_2=-5/6$

[A.]
$$\hat{x}_2 = 1/6$$
 [B.] $\hat{x}_2 = -35/6$

[C.]
$$\hat{x}_2 = 41/6$$

[D.]
$$\hat{x}_2 = -5/6$$



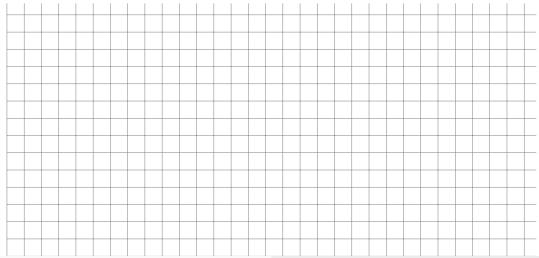
Série 12, Ex 14, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 10 / 33

Quelle affirmation est vraie pour toute matrice A de taille $n \times n$ et tout vecteur $b \in \mathbb{R}^n$?

- A. L'équation Ax = b a au plus une solution
- B. L'équation Ax = b a au plus une solution au sens des moindres carrées
- C. L'équation Ax = b a au moins une solution.
- D. L'équation Ax = b a au moins une solution au sens des moindres carrées.

Série 12, Ex 15, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 12 / 33

Soit u_1, \ldots, u_p une base orthonormée d'un sous-espace $W \subset \mathbb{R}^n$ et $y \in \mathbb{R}^n$ et soit U la matrice $n \times p$ dont les colonnes sont les vecteurs u_1, \ldots, u_p . Montrer que $p_W(y) = UU^Ty$.



Série 12, Ex 16, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 14 / 33

9.13 La factorisation QR : définition

Définition

Soit $A \in M_{m \times n}(\mathbb{R})$ une matrice dont les colonnes sont linéairement indépendantes. Alors il existe une factorisation du type A = QR, où

- \blacksquare Q est une matrice $m\times n$ dont les colonnes forment une base orthonormée de l'espace colonnes de A
- lacksquare R est une matrice $n \times n$ triangulaire supérieure, inversible, dont les coefficients diagonaux sont strictement positifs.

9.13 La factorisation QR : construction par Gram-Schmidt

Soit A une matrice $m \times n$ avec colonnes $\vec{a}_1, \dots, \vec{a}_n$ linéairement indépendante.

Procédé de Gram-Schmidt

Normalisation

$$\vec{v}_1 = \vec{a}_1, \qquad \vec{w}_1 = \vec{v}_1/||\vec{v}_1||$$

$$\vec{v}_2 = \vec{a}_2 - (\vec{w}_1 \cdot \vec{a}_2) \vec{w}_1, \qquad \vec{w}_2 = \vec{v}_2/||\vec{v}_2||$$

$$\vec{v}_3 = \vec{a}_3 - (\vec{w}_1 \cdot \vec{a}_3) \vec{w}_1 - (\vec{w}_2 \cdot \vec{a}_3) \vec{w}_2, \qquad \vec{w}_3 = \vec{v}_3/||\vec{v}_3||$$

$$\vdots$$

$$\vec{v}_n = \vec{a}_n - \dots - (\vec{w}_{n-1} \cdot \vec{a}_k) \vec{w}_{n-1}, \qquad \vec{w}_n = \vec{w}_n/||\vec{v}_n||$$

$$Q = (\vec{w}_1 \cdots \vec{w}_n) \qquad R = \begin{pmatrix} ||\vec{v}_1|| & \vec{w}_1 \cdot \vec{a}_2 & \cdots & \vec{w}_1 \cdot \vec{a}_n \\ 0 & ||\vec{v}_2|| & \vec{w}_2 \cdot \vec{a}_3 & \cdots \vdots \\ 0 & 0 & \ddots & \ddots \\ 0 & \cdots & 0 & ||\vec{v}_n|| \end{pmatrix}$$

9.14 La factorisation QR : application à la résolution d'un système au sens des moindres carrés

Soit $A \in M_{m \times n}(\mathbb{R})$ une matrice dont les colonnes sont linéairement indépendantes et soit A = QR une factorisation QR de A.

Proposition

$$QQ^T\vec{b} = \mathrm{proj}_{\mathrm{Col}(A)}\vec{b} \qquad \text{ pour tout } \vec{b} \in \mathbb{R}^n.$$

Proposition

Pour tout $\vec{b} \in \mathbb{R}^n$, l'équation $A\vec{x} = \vec{b}$ admet une unique solution au sens des moindres carrés, donnée par la formule

$$\hat{x} = R^{-1} Q^T \vec{b}.$$

Soient A une matrice de taille $m \times n$ et $b \in \mathbb{R}^m$. Soit $c = \operatorname{proj}_{\operatorname{Col}(A)}(b)$. Alors, il es toujours vrai que

- A. la solution au sens des moindres carrés de l'équation Ax = b est $A^{-1}c$.
- B. l'équation Ax = b n'admet aucune solution
- C. toute solution de Ax=c est une solution au sens des moindres carrés de Ax=b
- D. l'équation Ax = c possède une solution unique.



Série 12, Ex 17, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 19 / 33

Quelle équation correspond à la droite de régression par les points

$$(0,1),(1,1),(2,2),(3,2)$$
?

A.
$$y = 0.9 + 0.4x$$

B.
$$y = 1 + 0.5x$$

C.
$$y = 18 + 4x$$

D.
$$y = 1.1 + 0.6x$$

Série 12, Ex 18, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 21 / 33

Soit U une matrice de taille $n \times p$ dont les colonnes sont orthonormées et soit $W = \operatorname{Col}(U)$. Alors, pour tout vecteur $x \in \mathbb{R}^p$ et tout vecteur $y \in \mathbb{R}^n$, on a

A.
$$U^TUx = \operatorname{proj}_W(x)$$
 et $UU^Ty = \operatorname{proj}_W(y)$

B.
$$U^TUx = x$$
 et $UU^Ty = 0$

C.
$$U^TUx = x$$
 et $UU^Ty = y$

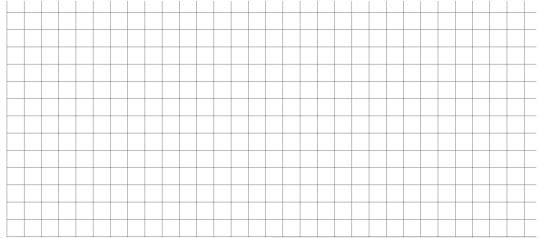
D.
$$U^TUx = x$$
 et $UU^Ty = \operatorname{proj}_W(y)$.

Série 12, Ex 19, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 23 / 33

Soit A une matrice dont les colonnes sont linéairement indépendantes, et soit A=QR sa factorisation QR. Alors R est une matrice inversible.

A. Vrai

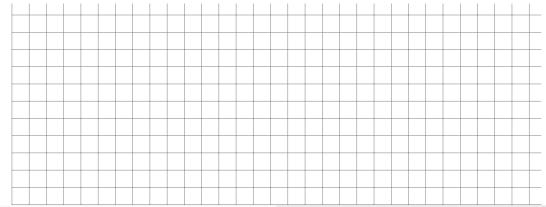
B. Faux



Série 12, Ex 20, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 25 / 33

Calculer une factorisation QR de la matrice suivante :

$$A = \begin{pmatrix} 0 & 0 \\ 1 & 2 \\ 0 & -1 \\ -1 & 1 \end{pmatrix}$$



Série 12, Ex 21, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 27 / 33

Soit

$$A = \begin{pmatrix} 1 & 3 & 0 \\ 1 & -1 & 6 \\ 1 & 1 & 3 \\ 0 & 1 & -6 \end{pmatrix}.$$

Soit A = QR la décomposition QR de A. Alors

[A.]
$$r_{33} = 2\sqrt{2}$$
 [B.] $r_{33} = \sqrt{2}$ [C.] $r_{33} = \sqrt{3}$ [D.] $r_{33} = 3\sqrt{2}$

[B.]
$$r_{33} = \sqrt{2}$$

[C.]
$$r_{33} = \sqrt{ }$$

[D.]
$$r_{33} = 3\sqrt{2}$$

Série 12, Ex 22, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 29 / 33

Soient A une matrice non-nulle de taille $m \times n$ et $b \in \mathbb{R}^m$. Alors, il est toujours vrai que

- A. le vecteur b Ax appartient à $\ker(A^T)$ pour un unique choix de $x \in \mathbb{R}^n$.
- B la matrice A^TA est inversible
- C. l'équation Ax = b admet une unique solution au sens des moindres carrés.
- D. si \hat{x} et \hat{x}' sont deux solutions au sens des moindres carrés de Ax = b, alors $A\hat{x} = A\hat{x}'$

Série 12, Ex 23, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 31 / 33

Chapitre 9 : Produits scalaires et espaces euclidiens

À savoir faire :

- 1 Calculs avec produits scalaires et normes.
- 2 Déterminer si un ensemble de vecteurs est orthogonal ou orthonormal.
- 3 Trouver une base orthogonale à partir d'un ensemble génératrice donné en utilisant le procédé de Gram-Schmidt.
- 4 Trouver l'orthogonal à un sous-espace vectoriel $W \subset \mathbb{R}^n$.
- **5** Calculer la projection orthogonale d'un vecteur sur un sous-espace vectoriel.
- Trouver les solutions au sens des moindres carrées d'un système d'équations linéaires.
- **7** Calculer la droite de régression à partir d'un ensemble de points dans \mathbb{R}^n .
- 8 Calculer la décomposition QR d'une matrice donnée.

Devoirs pour jeudi :

Jeudi pas de cours, faites le rendu individuel a 14h15. La séance d'exercices se tient comme d'habitude.