Algèbre linéaire Chapitre 9 : Valeurs et vecteurs propres

Simone Deparis

EPFL Lausanne – MATH

Semaine 9

8.1 Valeurs propres et vecteurs propres, définitions, exemples

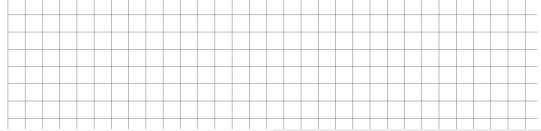
$$A \in M_{n \times n}(\mathbb{R}).$$

Définition

 $\lambda \in \mathbb{R}$ est une valeur propre de A s'il existe $\vec{x} \in \mathbb{R}^n$ non-nul tel que $A\vec{x} = \lambda \vec{x}$. Si $\lambda \in \mathbb{R}$ est une valeur propre de A, alors toute solution non-nulle de $A\vec{x} = \lambda \vec{x}$ s'appelle un vecteur propre de A correspondant à la valeur propre λ .

Attention!

- Le vecteur nul ne peut pas être un vecteur propre par définition.
- Le nombre zéro peut être une valeur propre.

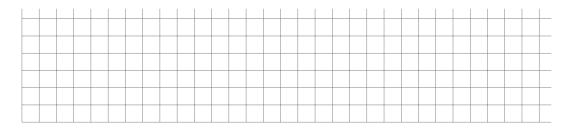


8.2 Valeurs propres : transformations linéaires et matrice associée

Proposition

Soient $\dim V<\infty$, $T:V\to V$ une transformation linéaire et $A=[T]_{\mathscr B}$ la matrice de T par rapport à une base $\mathscr B$ de V.

 $\lambda \in \mathbb{R}$ est une valeur propre de T si et seulement si $\lambda \in \mathbb{R}$ est une valeur propre de A.



8.2 Valeurs propres : comment les trouver S. Deparis, SCI-SB-SD EPFL

Série 9, Ex 1, *D*

On considère la matrice
$$A_{\lambda}=\left(\begin{array}{ccc} -1-\lambda & 5 & 2 \\ 5 & -1-\lambda & 2 \\ 2 & 2 & 2-\lambda \end{array}\right)$$
 . Alors le

déterminant de A_{λ} est

A.
$$\lambda^2 - 5\lambda + 5$$

B.
$$\lambda^3 + 36\lambda$$

C.
$$(\lambda - 4)(\lambda - 1)^2$$

D.
$$-\lambda(\lambda+6)(\lambda-6)$$
.

Série 9, Ex 1, *D*

Soit A_{λ} la même matrice que dans la question précédente. Pour quelles valeurs de $\lambda \in \mathbb{R}$ est-ce que le système d'équations linéaires $A_{\lambda}x=0$ a une infinité de solutions ?

- A. -9
- B. -6
- **C**. 3
- D. 0
- E. 6
- F. 9
- G. pour encore d'autres valeurs.

Soit la matrice

$$A = \left(\begin{array}{rrr} 1 & 3 & 3 \\ 3 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right).$$

Alors les valeurs propres de A sont

- □ -2 et 7
- □ 3 et 4
- \Box -5, -1 et 1
- □ -2 et 3

Série 9, Ex 9, solution Algèbre linéaire 8 / 36 S. Deparis, SCI-SB-SD EPFL

Quelles affirmations sont toujours vraies?

- Soient A et B deux matrices carrées semblables. Alors A et B ont les mêmes valeurs propres.
- **5** Soient A et B deux matrices carrées semblables. Alors A et B ont les mêmes vecteurs propres.
- Soient A et B deux matrices carrées qui ont les mêmes valeurs propres. Alors A et B sont semblables.
- **d** Soit A une matrice carrée. A et A^T ont les mêmes valeurs propres.

Série 9, Ex 11, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 10 / 36

Soit la matrice

$$A = \left(\begin{array}{rrr} 1 & 1 & -2 \\ 10 & 4 & -\ell \\ -4 & c & -2 \end{array}\right),$$

avec les paramètres $\ell, c \in \mathbb{R}$. Alors, pour tout $\ell \in \mathbb{R}$, -1 est une valeur propre de la matrice A si

- \Box c=-2
- \Box c=8
- \Box c=1
- \Box c = -1

(plusieures réponses correctes).

Série 9, Ex 11, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 12 / 36

8.3 Polynôme caractéristique

$$A \in M_{n \times n}(\mathbb{R}).$$

Définition

Le polynôme caractéristique de A, noté $c_A(t)$, est le polynôme défini par

$$c_A(t) = \det(A - tI).$$

Proposition

Soit P $n \times n$ inversible. Alors

$$c_A(t) = c_{PAP^{-1}}(t).$$

Conséquence : Le polynôme caractéristique est invariable par rapport au changement de base.

Soient a,b deux nombres réels tels que a+b=1 et $A=\begin{pmatrix} 4a & 2 \\ 2 & 4b \end{pmatrix}$ une matrice non-inversible. Laquelle des affirmations suivantes doit être vraie?

- \Box $\det(A) = -4$
- \square A est une matrice de changement de base
- $\ \square$ le polynôme caractéristique de A a une seule racine réelle
- \square le polynôme caractéristique de A a deux racines réelles distinctes

Série 9, Ex. 12, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 15 / 36

Devoirs pour jeudi :

- Regarder les vidéos 8.6 8.8 du MOOC et faire les petits quiz après les vidéos.
- Faire quelques exercices de 8.13.

Quelles affirmations sont toujours vraies?

- Une matrice carrée a au moins une valeur propre.
- **b** Une matrice de taille $n \times n$ a au plus n valeurs propres différentes.
- Soit A une matrice de taille $n \times n$ et λ une valeur propre de A. Alors la multiplicité algébrique de λ est toujours plus grande où égale à la multiplicité géométrique de A.
- Soit A une matrice carrée. Alors A est inversible si et seulement si 0 n'est pas une valeur propre de A.
- Les valeurs propres de la matrice

$$A = \left(\begin{array}{cc} 3 & 4 \\ 0 & 1 \end{array}\right).$$

sont 3, 1 et 4.

Série 9, Ex. 13, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 18 / 36

Soit

$$A = \left(\begin{array}{cc} 3 & 4 \\ 0 & 1 \end{array}\right).$$

Calculer les vecteurs propres de ${\cal A}$ par rapport à la valeur propre 3.



8.4 Espaces propres de $A \in M_{n \times n}(\mathbb{R})$.

Définition

Si $\lambda \in \mathbb{R}$ est une valeur propre de A. L'espace propre de A associé à λ est le sous-ensemble de $M_{n \times 1}(\mathbb{R})$ défini par

$$E_{\lambda} = \{ \vec{x} \in \mathbb{R}^n : A\vec{x} = \lambda \vec{x} \}.$$

Proposition

Le sous-ensemble E_{λ} est un sous-espace vectoriel.

$$E_{\lambda} = \left\{ \vec{0} \right\} \cup \{ \text{ les vecteurs propres de } A \text{ correspondants à } \lambda \, \}$$

8.5 Indépendance linéaire, base de vecteurs propres de A $n \times n$

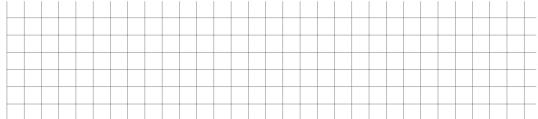
Proposition

Soient $\lambda_1, \ldots, \lambda_r$ des valeurs propres distinctes de A et v_1, \ldots, v_r des vecteurs correspondants.

Alors v_1, \ldots, v_r sont linéairement indépendants et la somme $E_{\lambda_1} \oplus \ldots \oplus E_{\lambda_r}$ est directe.

Proposition

Supposons que A possède n valeurs propres distinctes $\lambda_1, \ldots, \lambda_n$. Alors il existe une base \mathscr{B} de \mathbb{R}^n telle que $[T_A]_{\mathscr{B}}$ soit une matrice diagonale.



8.6 Matrices diagonalisables, transformations linéaires diagonalisables

Définition

Une matrice $A \in M_{n \times n}(\mathbb{R})$ est dite diagonalisable s'il existe $P \in M_{n \times n}(\mathbb{R})$ inversible telle que $P^{-1}AP$ soit diagonale.

Série 9, Ex 9 : Diagonaliser A

Soit la matrice

$$A = \left(\begin{array}{ccc} 1 & 3 & 3 \\ 3 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right).$$

Alors les valeurs propres de A sont

- □ -2 et 7
- □ 3 et 4
- \Box -5, -1 et 1
- □ -2 et 3

Série 9, Ex 9 : Diagonaliser A, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 24 / 36

8.7 Multiplicité algébrique, multiplicité géométrique de A $n \times n$

Définition

Soit $\lambda \in \mathbb{R}$ une valeur propre de A. Comme toute valeur propre de A est racine de $c_A(t)$, on peut factoriser

$$c_A(t) = (t - \lambda)^m p(t)$$
, où $p(\lambda) \neq 0$ (i.e. $t - \lambda$ ne divise pas $p(t)$).

L'entier m est appelé la multiplicité algébrique de λ .

La dimension du sous-espace E_{λ} est appelée la multiplicité géométrique de λ .

Proposition

Soit $\lambda \in \mathbb{R}$ une valeur propre de A. Alors

- lacksquare la multiplicité géométrique de λ est supérieure ou égale à 1.
- la multiplicité géométrique de λ est inférieure ou égale à la multiplicité algébrique de λ .

8.8 Critère de diagonalisabilité A $n \times n$

Théorème

A est diagonalisable si et seulement s'il existe $a\in\mathbb{R},\,\lambda_1,\ldots,\lambda_r\in\mathbb{R}$ distincts et $m_1,\ldots,m_r\in\mathbb{N}$ tels que

$$c_A(t) = a(t - \lambda_1)^{m_1} \cdots (t - \lambda_r)^{m_r}$$

et $m_i = \dim E_{\lambda_i}$ pour tout $1 \le i \le n$.

En d'autres terms : si et seuelement si $c_A(t)$ est factorisable en monomes dans $\mathbb R$ et les multiplicité géométriques et algébrique respectives coı̈ncides.

Si A est diagonalisable alors $m_1 + ... + m_r = n$.

Soit A une matrice carrée de taille $n \times n$ et soit P une matrice de taille $n \times n$ telle que chacune des colonnes de P est un vecteur propre de la matrice A. Alors il est toujours vrai que

- \square AP = PD, où D est une matrice diagonale
- \square P est inversible et PAP^{-1} est une matrice diagonale
- \square P est inversible et $P^{-1}AP$ est une matrice diagonale
- \square PA = DP où D est une matrice diagonale

Série 9, Ex. 14, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 28 / 36

Soit A une matrice de taille $n \times n$ de rang m < n. Alors, est valeur propre de A de multiplicité géométrique n-m est valeur propre de A de multiplicité algébrique n-m est une valeur propre de A de multiplicité algébrique > n-mn'est pas valeur propre de A

Série 9, Ex. 15, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 30 / 36

Soit A une matrice de taille 3×3 tel que le polynôme caractéristique de A est $c_A(t) = (2-t)^3$. Quelles affirmations sont toujours vraies?

- \square A est inversible.
- \square A est diagonalisable.
- \Box $\det(A) \neq 0$.
- \square La seule valeur propre de A est 2.
- ☐ Aucune des affirmations ci-dessus n'est vraie.

(plusieures réponses possibles)

Série 9, Ex. 16, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 32 / 36

Soient A et B deux matrices carrées de même taille. On suppose que B est une matrice inversible. Soit λ une valeur propre de A et aussi de B. Parmi les affirmations suivantes, lesquelles sont toujours vraies?

- $\ \square$ $\ \lambda$ est une valeur propre de la matrice A+B
- \supset λ est une valeur propre de la matrice AB
- \square λ est une valeur propre de la matrice BAB^{-1}
- \square λ^2 est une valeur propre de la matrice BA.

Série 9, Ex. 17, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 34 / 36

Devoirs pour mardi :

- MOOC 8.9-9.10 : Regarder les vidéos et faire les petits quiz après les vidéos.
- MOOC 8.13 : faire les exercices en ligne.