Algèbre linéaire

Chapitre 6 : Bases et dimension

Simone Deparis

EPFL Lausanne – MATH

Semaine 7

6.6 Rang-ligne, rang-colonne (compléments)

Théorème

Soit $A\ m \times n.$ Le rang-colonne de A est égal au rang-ligne de A.

Question 1

Soit A une matrice $m \times n$ telle que l'application linéaire $T_A \colon \mathbb{R}^n \to \mathbb{R}^m$ donnée par $v \mapsto Av$ est bijective. Alors l'application linéaire $T_{A^T} \colon \mathbb{R}^m \to \mathbb{R}^n$ donnée par $v \mapsto A^Tv$ est aussi bijective.

- A. Vrai
- B. Faux

6.7 Bases de l'image et du noyau (compléments)

Proposition

Soient A une matrice $m \times n$ et \hat{A} une matrice échelonnée ligne-équivalente à A. Si les pivots de \hat{A} se situent dans les colonnes aux indices i_1, \ldots, i_t de \hat{A} , alors les colonnes C_{i_1}, \ldots, C_{i_t} de A forment une base de l'espace-colonnes de A.

Question 2

Soit

$$A = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 3 & 6 & 1 & 0 \\ 1 & 2 & 1 & -2 \\ 0 & 0 & 3 & -9 \end{pmatrix}.$$

Trouver une base de $\operatorname{Lgn} A$, une base de $\operatorname{Col} A$ et une base de $\ker A$.

Série 7, Exercice 8

Calculer les produits matriciels suivants, et indiquer les compositions correspondantes de transformations linéaires, avec les dimensions des espaces, $\vec{T}_{AB}: \mathbb{R}^{\cdots} \to \mathbb{R}^{\cdots} \to \mathbb{R}^{\cdots}$.

(a)
$$AB$$
, où $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \end{pmatrix}$.

(b)
$$ABC$$
, où $A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{pmatrix}$.

(c)
$$ABC$$
, où $A = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

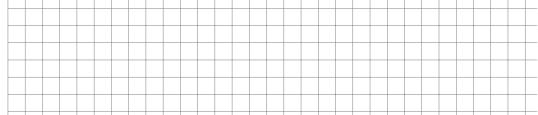
Série 7, Exercice 8, solution Algèbre linéaire S. Deparis, SCI-SB-SD EPFL 7 / 30

Série 7, Exercice 9

Soient
$$T_1: \mathbb{R}^2 \to \mathbb{R}^3$$
; $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ x_2 \\ x_1 \end{pmatrix}$, et

$$T_2: \mathbb{R}^3 \to \mathbb{R}; \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) \mapsto x_1 + x_2 + x_3.$$

- (a) Écrire les matrices canoniques associées à T_1 et T_2 et le produit matriciel associé à la composition $T_2 \circ T_1$ telle que $T_2 \circ T_1(\vec{x}) = T_2\left(T_1(\vec{x})\right)$ pour tout $\vec{x} \in \mathbb{R}^2$.
- (b) Quel est le domaine de définition de $T_2 \circ T_1$? Quel est le domaine d'arrivée?

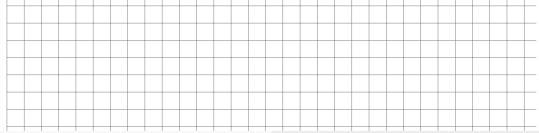


Série 7, Exercice 9, solution S. Deparis, SCI-SB-SD EPFL 9 / 30

Série 7, Exercice 6

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- [a] Soient V un espace vectoriel et H un sous-espace vectoriel de V. Alors V est un sous-espace vectoriel de lui-même (ou d'un espace vectoriel plus grand) et H est un espace vectoriel.
- (b) Si H est un sous-ensemble d'un espace vectoriel V, alors il suffit que 0_V soit dans H pour que H soit un sous-espace vectoriel de V.
- Color Une matrice carrée A est inversible si et seulement si $Ker(A) = {\vec{0}}$.

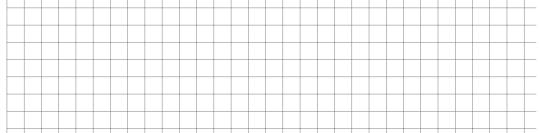


Série 7, Exercice 6, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 11 / 30

Série 7, Exercice 7

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) Si une matrice A est de taille $m \times n$ alors l'image de la transformation $\vec{x} \mapsto A\vec{x}$ est contenue dans \mathbb{R}^n .
- b) Chaque transformation linéaire est une transformation matricielle.
- c) La transformation $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = mx^2 + b$ est linéaire pour b=0.
- d) Une transformation linéaire préserve les opérations d'addition vectorielle et de multiplication par un scalaire.



Série 7, Exercice 7, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 13 / 30

Devoirs pour jeudi :

- Regarder les vidéos 6.8 6.12 du MOOC.
- Faire les petits quiz après les vidéos.
- MOOC 6.13 : Faire quelques exercices en ligne.
- Réviser et discuter sur Ed Discussion.

Algèbre linéaire Chapitre 6b : Changement de base

Simone Deparis

EPFL Lausanne – MATH

Semaine 7

6.9 Changement de base, matrices de passage

Soit V un \mathbb{R} -espace vectoriel.

Définition

Toute application linéaire $T \in \mathcal{L}(V,V)$ est appelée une transformation linéaire, ou un opérateur linéaire.

Si $\dim V < \infty$ et \mathscr{B} est une base ordonnée de V, alors on écrit $[T]_{\mathscr{B}}$ pour désigner la matrice de T par rapport à la base \mathscr{B} .

Définition

Soient $\dim V=n<\infty$ et \mathscr{B},\mathscr{C} deux bases ordonnées de V. La matrice de passage entre les bases \mathscr{B} et \mathscr{C} est la matrice $[id_V]_{\mathscr{CB}}$, où $id_V:V\to V$ est l'application définie par T(v)=v pour tout $v\in V$.

6.9 Changement de base, matrices de passage

Lemme

Soient $\dim V=n<\infty$ et \mathscr{B},\mathscr{C} deux bases ordonnées de V. Posons $P=[id_V]_{\mathscr{CB}}$. Alors :

- $\blacksquare P[v]_{\mathscr{B}} = [v]_{\mathscr{C}}.$

6.12 Changement de base, cas général

Soient A_1, A_2 deux matrices de taille $n \times n$.

Définition

On dit que A_1 et A_2 sont semblables s'il existe une matrice inversible P $n \times n$ telle que $P^{-1}A_1P = A_2$.

Si $A_1, A_2 \in M_{n \times n}(\mathbb{R})$ sont deux matrices semblables, alors $\operatorname{rang} A_1 = \operatorname{rang} A_2$.

Si $A_1, A_2 \in M_{n \times n}(\mathbb{R})$ sont deux matrices semblables, alors A_1 est inversible si et seulement si A_2 est inversible.

6.12 Changement de base, cas général

Soient V,W deux \mathbb{R} -espaces vectoriels de dimension finie et $T:V\to W$ un application linéaire.

Lemme

Considérons deux bases ordonnées $\mathcal{B}_1, \mathcal{B}_2$ de V ainsi que deux bases ordonnées $\mathcal{C}_1, \mathcal{C}_2$ de W. Alors

$$[T]_{\mathscr{C}_2\mathscr{B}_2} = [id_W]_{\mathscr{C}_2\mathscr{C}_1}[T]_{\mathscr{C}_1\mathscr{B}_1}[id_V]_{\mathscr{B}_1\mathscr{B}_2}.$$

Série 7, Ex 13

Soit $\mathcal E$ la base canonique de $\mathbb R^3$ et $\mathcal B$ la base de $\mathbb R^3$ donnée par

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Calculer la matrice de passage $P_{\mathcal{BE}} = [\mathrm{id}]_{\mathcal{BE}}$ et la matrice de passage $P_{\mathcal{EB}} = [\mathrm{id}]_{\mathcal{EB}}$.

Série 7, Ex 13, I

La matrice $P_{\mathcal{BE}}$ est

A.
$$\begin{pmatrix} -1 & 1 & -1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

B.
$$\begin{pmatrix} 0 & 2 & 1 \\ 3 & -2 & 0 \\ -2 & 3 & 0 \end{pmatrix}$$

C.
$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
D.
$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 0 \end{pmatrix}$$

$$\begin{array}{cccc}
D. & \begin{pmatrix} 0 & 1 & 0 \\
1 & -1 & 0 \\
-1 & 1 & 1 \end{pmatrix}
\end{array}$$

Série 7, Ex 13, II

La matrice $P_{\mathcal{EB}}$ est

A.
$$\begin{pmatrix} -1 & 1 & -1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

B.
$$\begin{pmatrix} 0 & 2 & 1 \\ 3 & -2 & 0 \\ -2 & 3 & 0 \end{pmatrix}$$

C.
$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
D.
$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 0 \\ -1 & 1 & 1 \end{pmatrix}$$

Serie 7, Ex 10, I

On considère les deux bases suivantes de $\mathbb{P}_2(\mathbb{R})$: $\mathcal{B}=(t^2-1,t+1,t-1)$ et $\mathcal{C}=(1,t,t^2)$.

Calculer la matrice de passage $P_{BC} = [id]_{BC}$.

Serie 7, Ex 10, II

La matrice P_{CB} est

A.
$$\begin{pmatrix} -1 & 1 & -1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

B.
$$\begin{pmatrix} 0 & 2 & 1 \\ 3 & -2 & 0 \\ -2 & 3 & 0 \end{pmatrix}$$

C.
$$\begin{pmatrix} 0 & 0 & 1 \\ 1/2 & 1/2 & 1/2 \\ -1/2 & 1/2 & -1/2 \end{pmatrix}$$

$$\begin{array}{cccc}
D. & \begin{pmatrix} 0 & 1 & 0 \\
1 & -1 & 0 \\
-1 & 1 & 1 \end{pmatrix}
\end{array}$$

Serie 7, Ex 10, III

Soit $T\colon \mathbb{P}_2(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R})$ l'application linéaire définie par T(p) = p'(t)t + p(0). Alors la matrice $[T]_{\mathcal{C}} = [T]_{\mathcal{CC}}$ de T par rapport à la base $\mathcal{C} = (1,t,t^2)$ est :

A.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

B.
$$\begin{pmatrix} 0 & 2 & 1 \\ 3 & -2 & 0 \\ -2 & 3 & 0 \end{pmatrix}$$

C.
$$\begin{pmatrix} 2 & 0 & 0 \\ 1/2 & 1 & 0 \\ -1/2 & 0 & 1 \end{pmatrix}$$

$$\begin{array}{cccc}
D. & \begin{pmatrix}
0 & 1 & 0 \\
1 & -1 & 0 \\
-1 & 1 & 1
\end{pmatrix}$$

Serie 7, Ex 10, IV

Soit $T \colon \mathbb{P}_2(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R})$ l'application linéaire définie par T(p) = p'(t)t + p(0). Alors, la matrice $[T]_{\mathcal{B}} = [T]_{\mathcal{B}\mathcal{B}}$ de T par rapport à la base $\mathcal{B} = (t^2 - 1, t + 1, t - 1)$ est :

A.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

B.
$$\begin{pmatrix} 0 & 2 & 1 \\ 3 & -2 & 0 \\ -2 & 3 & 0 \end{pmatrix}$$

C.
$$\begin{pmatrix} 2 & 0 & 0 \\ 1/2 & 1 & 0 \\ -1/2 & 0 & 1 \end{pmatrix}$$

$$\begin{array}{cccc}
D. & \begin{pmatrix} 0 & 1 & 0 \\
1 & -1 & 0 \\
-1 & 1 & 1 \end{pmatrix}
\end{array}$$

Serie 7, Ex 11

Soient $A, B \in M_{n \times n}(\mathbb{R})$ deux matrices semblables. Montrer que $\dim(\ker(A)) = \dim(\ker(B))$.

Serie 7, Ex 11

Soient $A, B \in M_{n \times n}(\mathbb{R})$ deux matrices semblables. Quelles affirmations sont toujours vraies?

- $A. \ker(A) = \ker(B)$
- $B. \dim(\ker(A)) = \dim(\ker(B))$
- C . $\mathrm{Col}(A) = \mathrm{Col}(B)$
- $D. \operatorname{rang}(A) = \operatorname{rang}(B)$

Serie 7, Ex 12

Soit A une matrice $m \times n$ et $T_A \colon \mathbb{R}^n \to \mathbb{R}^m$ l'application linéaire donnée par $v \mapsto Av$. Soient A' une matrice $m \times n$ ligne-équivalente à A et $T_{A'} \colon \mathbb{R}^n \to \mathbb{R}^m$ l'application linéaire donnée par $v \mapsto A'v$.

Quelles affirmations sont toujours vraies?

- A. $\ker T_A = \ker T_{A'}$.
- B. $\dim(\ker T_A) = \dim(\ker T_{A'}).$
- C. im $T_A = \operatorname{im} T_{A'}$.
- D. $\dim(\operatorname{im} T_A) = \dim(\operatorname{im} T_{A'}).$
- E. Aucunes des affirmations ci-dessus.

Devoirs pour mardi :

- Regarder les vidéos 7.1 7.5 du MOOC.
- Faire les petits quiz après les vidéos.
- MOOC 7.8 : faire quelques exercices en ligne (sans les parties sur la règle de Cramer).

Jeudi prochain nous ferons une séance de révision. Révisez tout le matériel des chapitres 1-7 et puis faites le quiz d'entraînement sur Moodle avant jeudi.