Algèbre linéaire Chapitre 5 : Applications linéaires

Simone Deparis

EPFL Lausanne – MATH

Semaine 6

5.5-5.6 Noyau et image d'une application linéaire

Soit $T:V\to W$ une application linéaire.

Définition

 $\text{Le noyau de } T \text{ est le sous-ensemble de } V \qquad \ker(T) = \{v \in V : T(v) = 0_W\}. \\ \text{L'image de } T \text{ est le sous-ensemble de } W \qquad \operatorname{im}(T) = \{T(v) : v \in V\}.$

Proposition

Alors les affirmations suivantes sont vérifiées.

- \blacksquare Le noyau de T est un sous-espace vectoriel de V.
- L'application T est injective si et seulement si $ker(T) = \{0_V\}$.
- \blacksquare im(T) est un sous-espace vectoriel de W.

Si $\dim \operatorname{im}(T) < \infty$, alors on appelle l'entier $\dim(\operatorname{im}(T))$ le rang de T.

Soit A une matrice $m \times n$ et $T_A \colon \mathbb{R}^n \to \mathbb{R}^m$ l'application linéaire définie par $x \mapsto Ax$. Quelles affirmations sont toujours vraies?

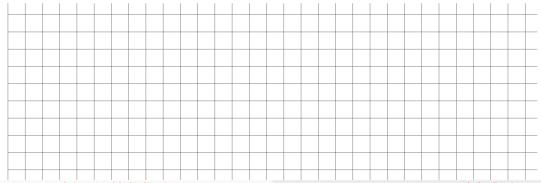
- A. L'image de T_A est l'espace colonne de A.
- B. L'image de T_A est l'espace de tous les $b \in \mathbb{R}^m$ tels que Ax = b est compatible.
- C. Le noyeau de T_A est l'espace ligne de A.
- D. Le noyeau de T_A est l'espace des solutions de l'équation Ax = 0.

Série 6, Exercice 13, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 4 / 32

Soit A une matrice de taille $m \times n$ et soit l'application linéaire $\vec{T}_A : \mathbb{R}^n \to \mathbb{R}^m$ donnée par $\vec{T}_A(\vec{x}) = A\vec{x}$. Remplacer le symbole $\stackrel{?}{:}=$? par le bon opérateur logique \Rightarrow , \Leftarrow , \Leftrightarrow , ou \neq

- (a) \vec{T}_A est injective ?=? A a une position pivot dans chaque colonne.
- (b) \vec{T}_A est surjective $\stackrel{?}{=}$? A a une position pivot dans chaque ligne.

Le montrer et préciser dans chaque cas quelle est la condition nécessaire entre m et n.



Série 6, Exercice 14, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 6 / 32

5.7-5.8 Le théorème du rang et critère de bijectivité

Théorème

Si $\dim V < \infty$, alors $\dim \operatorname{im}(T) < \infty$ et

$$\dim V = \dim(\ker(T)) + \dim(\operatorname{im}(T)).$$

Corollaire (du théorème du rang)

Les affirmations suivantes sont vérifiées.

- Si T est bijective, alors $\dim V = \dim W$.
- \blacksquare Si dim $V=\dim W$ et T est injective, alors T est bijective.
- Si $\dim V = \dim W$ et T est surjective, alors T est bijective.

Vrai ou faux?

- A Soit V un espace vectoriel de dimension 2022 et W un espace vectoriel de dimension 2021. Alors le noyau de toute transformation linéaire surjective $T\colon V\to W$ est toujours de dimension 1.
- **B** Soit $T: \mathbb{R}^7 \to \mathbb{P}_6(\mathbb{R})$ une application linéaire injective. Alors T est surjective.
- C. Soit V un espace vectoriel de dimension n et $\mathcal{B}=(v_1,\ldots,v_n)$ une base ordonnée de V. Alors l'application des coordonnées $[\cdot]_{\mathcal{B}}\colon V\to\mathbb{R}^n$ est une application linéaire bijective.



Série 6, Exercice 15, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 9 / 32

5.9 Opérations avec des applications linéaires

Définition

Soient S et $T:V\to W$ deux applications linéaires.

On définit $T+S:V\to W$ par (T+S)(v)=T(v)+S(v) et pour $\lambda\in\mathbb{R},$ on définit également $\lambda T:V\to W$ par $(\lambda T)(v)=\lambda T(v).$

Lemme

Les applications définies ci-dessus sont linéaires.

Lemme

Soient U, V, W des \mathbb{R} -espaces vectoriels et $T: U \to V, \, S: V \to W$ des applications linéaires.

Alors la composition $S \circ T : U \to W$ est une application linéaire.

5.10 Applications inversibles

Lemme

Soit $T:V\to W$ une application linéaire bijective. Alors l'unique application $S:W\to V$ telle que $T\circ S=id_W$ et $S\circ T=id_V$ est linéaire. On dira que T est une application linéaire inversible avec inverse $S=T^{-1}$.

Soient $T:V\to W$ une application linéaire de $V=\mathbb{P}_2$ dans $W=\mathbb{P}_1$ et $B=(b_1,b_2,b_3)=(t^2-t+1,2t+1,2t-1)$ et C=(1,t) bases de V et W. Soit T telle que

$$T(b_1) = 2t - 1$$
, $T(b_2) = 2$, $T(b_3) = 2$

Soit $p(t) = t^2$, calculer T(p) ainsi que $[T(p)]_C$.

Quelle est la marche à suivre?

Mettre dans l'ordre et éliminer les 2 intrus :

- **a.** Mettre sous forme échelonnée la matrice augmentée (B|p).
- **b.** Alors $T(p) = \alpha_1 T(b_1) + \alpha_2 T(b_2) + \alpha_3 T(b_2)$.
- **C**alculer $[p]_B = (\alpha_1, \alpha_2, \alpha_3)$ (← en colonne).
- floor Compléter la base C en une base de V.
- \blacksquare Trouver les coordonnées de T(p) par rapport à C.

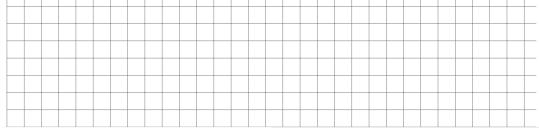
Série 6, Exercice 17, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 13 / 32

Série 6, Révision, Exercice 5

Considérons le système linéaire

$$\begin{cases} x_1 + 3x_2 - 5x_3 = 4 \\ x_1 + 4x_2 - 8x_3 = 7 \\ -3x_1 - 7x_2 + 9x_3 = -6. \end{cases}$$

- i) Écrire le système sous forme matricielle $A\vec{x} = \vec{b}$.
- ii) Écrire le système comme une combinaison linéaire des colonnes de la matrice ${\cal A}.$
- iii) Trouver la solution générale de l'équation $A\vec{x} = \vec{b}$.



Série 6, Révision, Exercice 5, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 15 / 32

Série 6, Révision, Exercice 6

Calculer $A(\alpha_1\vec{v}_1 + \alpha_2\vec{v}_2)$, où

a)

$$A = \begin{pmatrix} 2 & 1 \\ 4 & 0 \\ 1 & 3 \end{pmatrix}, \vec{v_1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \vec{v_2} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \alpha_1 = 2, \alpha_2 = 3;$$

b)

$$A = \begin{pmatrix} 2 & 1 & 4 \\ 3 & 2 & 1 \end{pmatrix}, \vec{v}_1 = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 3 \\ 1 \\ 7 \end{pmatrix}, \alpha_1 = -1, \alpha_2 = 1.$$

Série 6, Révision, Exercice 6, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 17 / 32

Devoirs pour jeudi :

- MOOC 6.1 6.2 : regarder les vidéos et faire les petits quiz associés.
- MOOC 6.4 6.5 : regarder les vidéos et faire les petits quiz associés.
- La partie 6.3 du MOOC est optionnelle.

Algèbre linéaire Chapitre 6 : Applications linéaires et matrices

Simone Deparis

EPFL Lausanne – MATH

Semaine 6

6.1 La représentation matricielle d'une application linéaire

Définition

Soient $T:V\to W$ linéaire et $\mathscr{B}_V=(v_1,\ldots,v_n)$ et $\mathscr{B}_W=(w_1,\ldots,w_m)$ des bases ordonnées de V et W respectivement.

La matrice de T par rapport aux bases \mathscr{B}_V et \mathscr{B}_W est la matrice $m \times n$

$$[T]_{\mathscr{B}_W\mathscr{B}_V} = ([T(v_1)]_{\mathscr{B}_W} \cdots [T(v_n)]_{\mathscr{B}_W}).$$

6.2 La représentation matricielle d'une application linéaire : premières propriétés

La propriété la plus importante

Soient $\mathscr{B}_V=(v_1,\dots,v_n)$ et $\mathscr{B}_W=(w_1,\dots,w_m)$ des bases ordonnées de V et W respectivement. Alors

$$[T(v)]_{\mathscr{B}_W} = [T]_{\mathscr{B}_W \mathscr{B}_V} [v]_{\mathscr{B}_V},$$

ceci pour tout $v \in V$.

Soit $\vec{T}: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire donnée par

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 3x_1 + x_3 \\ 2x_2 + x_3 \\ x_1 + x_2 \end{pmatrix}.$$

Soient E la base canonique de \mathbb{R}^3 et B une base de \mathbb{R}^3 donnée par

$$B = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

- Donner la matrice M qui représente \vec{T} par rapport aux bases E (de départ) et B (d'arrivée).
- \blacksquare Même question pour les bases B (de départ) et E (d'arrivée).
- \blacksquare Même question pour les bases B (de départ) et B (d'arrivée).

Série 6, Exercice 16, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 23 / 32

Soient $\mathcal{C}=(1,t,t^2)$ la base canonique de $\mathbb{P}_2(\mathbb{R})$ et $T\colon \mathbb{P}_2(\mathbb{R})\to \mathbb{P}_2(\mathbb{R})$ l'application linéaire définie par

$$T(a + bt + ct^{2}) = a + b(t - 1) + c(t - 1)^{2}.$$

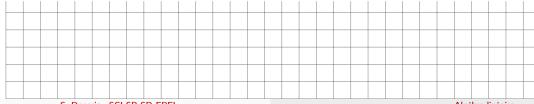
Alors, on a $[T(p)]_{\mathcal{C}}=M[p]_{\mathcal{C}}$ pour tout $p\in\mathbb{P}_2(\mathbb{R})$, où

A.
$$M = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

C.
$$M = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

B.
$$M = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

D.
$$M = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$



Série 6, Exercice 18, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 25 / 32

Soit $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie par

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 4x_3 \\ 3x_1 + 5x_2 - 2x_3 \\ x_1 + x_2 + 4x_3 \end{bmatrix}.$$

Considérer la base ordonnée $\mathcal{B} = \left(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right) \text{ de } \mathbb{R}^3.$

Alors la matrice M telle que $[T(v)]_{\mathcal{B}} = M[v]_{\mathcal{B}}$ est

A.
$$M = \begin{pmatrix} 4 & 6 & 6 \\ 0 & 8 & 8 \\ 0 & 3 & 1 \end{pmatrix}$$
 C. $M = \begin{pmatrix} 6 & 2 & 1 \\ 0 & 6 & 2 \\ -2 & -8 & -3 \end{pmatrix}$

B.
$$M = \begin{pmatrix} 6 & 0 & -2 \\ 2 & 6 & -8 \\ 1 & 2 & -3 \end{pmatrix}$$
 D. $M = \begin{pmatrix} 4 & 0 & 0 \\ 6 & 8 & 8 \\ 6 & 2 & 1 \end{pmatrix}$

Série 6, Exercice 19, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 27 / 32

Soient $T: \mathbb{R}^4 \to \mathbb{R}^2$ linéaire et les bases ordonnées \mathcal{B} de \mathbb{R}^4 et \mathcal{C} de \mathbb{R}^2 définies par

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 - 3x_2 \\ x_3 + x_1 + x_4 \end{bmatrix}, \ \mathcal{B} = \left(\begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix}\right), \ \mathcal{C} = \left(\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}\right)$$

Alors la matrice M telle que $[T(v)]_{\mathcal{C}} = M[v]_{\mathcal{B}}$ est

A.
$$M = \begin{pmatrix} 0 & 1 & 2/3 & 2/3 \\ 1 & -2 & -1/3 & -1/3 \end{pmatrix}$$

A.
$$M = \begin{pmatrix} 0 & 1 & 2/3 & 2/3 \\ 1 & -2 & -1/3 & -1/3 \end{pmatrix}$$
 C. $M = \begin{pmatrix} 0 & 1 & 2/3 & 2/3 \\ 1 & -2 & -1/3 & -1/3 \end{pmatrix}$

B.
$$M = \begin{pmatrix} 0 & 2 & 7/3 & 2 \\ 2 & -3 & -8/3 & -1 \end{pmatrix}$$
 D. $M = \begin{pmatrix} 4 & -4 & -3 & 0 \\ 2 & 1 & 2 & 3 \end{pmatrix}$

D.
$$M = \begin{pmatrix} 4 & -4 & -3 & 0 \\ 2 & 1 & 2 & 3 \end{pmatrix}$$

Série 6, Exercice 20, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 29 / 32

6.4 La composition d'applications linéaires

Proposition

Soient U,V,W trois \mathbb{R} -espaces vectoriels de dimensions finies et \mathcal{B}_U , \mathcal{B}_V , \mathcal{B}_W des bases de U,V et W respectivement. Soient également $T:U\to V$ et $S:V\to W$ deux applications linéaires. Alors

$$[S \circ T]_{\mathscr{B}_W \mathscr{B}_U} = [S]_{\mathscr{B}_W \mathscr{B}_V} [T]_{\mathscr{B}_V \mathscr{B}_U}.$$

6.5 Applications inversibles

Proposition

Soient V, W deux \mathbb{R} -espaces vectoriels de dimension $n \in \mathbb{N}, \mathcal{B}_V, \mathcal{B}_W$ des bases de V, W respectivement, et $T \in \mathcal{L}(V, W)$. Alors T est bijective si et seulement si $[T]_{\mathcal{B}_W\mathcal{B}_V}$ est une matrice inversible.

Devoirs pour mardi :

- Regarder les vidéos 6.6 6.7 du MOOC.
- Faire les petits quiz après les vidéos.
- MOOC 6.7.1 : faire quelques exercices en ligne (au moins un par sous-section).