Algèbre linéaire Chapitre 4 : Bases et dimension

Simone Deparis

EPFL Lausanne – MATH

Semaine 5

MOOC 3.8. Listes génératrices : problème 8

Soient
$$S = \{(2,5,3), (1,0,2)\}, T = \{(2,0,5), (3,5,5)\} \subseteq \mathbb{R}^3$$
. Que vaut $\text{Vect}(S) \cap \text{Vect}(T)$? (Plusieurs réponses possibles.)

- 2 $Vect(S) \cap Vect(T) = Vect(\{(3,5,5)\}).$
- 3 $Vect(S) \cap Vect(T) = Vect(\{(6, 10, 10)\}).$

Questions complémentaires :

- Est-ce que Vect(T) + Vect(S) est une somme directe?
- Donner une base de $Vect(T) \cap Vect(S)$ et Vect(T) + Vect(S).

MOOC 3.8. Listes génératrices : problème 8 S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 3 / 34

4.4 Dimension

Définition

Soit V un \mathbb{R} -espace vectoriel de dimension finie. Le nombre d'éléments dans une base s'appelle la dimension de V et on le désigne par $\dim V < \infty$. Autrement $\dim V = \infty$.

Proposition

Soit $\dim V < \infty$. Alors les deux affirmations suivantes sont vérifiées.

- Si $\{v_1, \ldots, v_r\}$ est un ensemble générateur de V, alors il existe une base \mathscr{B} de V telle que $\mathscr{B} \subset \{v_1, \ldots, v_r\}$. On parle d'extraction de base.
- Si $\{v_1, \ldots, v_r\}$ est une partie libre de V, alors il existe une base \mathscr{B} de V telle que $\{v_1, \ldots, v_r\} \subset \mathscr{B}$. On parle de *complétion en une base*.

4.5 Bases dans un espace de dimension connue

Théorème

Soit $\dim V = n$. Alors les deux affirmations suivantes sont vérifiées.

- lacksquare Si $S\subset V$ est une famille génératrice qui possède n éléments, alors S est une base de V.
- Si $S' \subset V$ est une famille libre qui possède n éléments, alors S' est une base de V.

4.6 Systèmes homogènes et base de l'espace des solutions

Soient $A \in M_{m \times n}(\mathbb{R})$ et $X = (x_1 x_2 \cdots x_n)^T$, où x_1, \dots, x_n sont des inconnues. Alors l'ensemble des solutions du système linéaire AX = 0 est un sous-espace vectoriel de \mathbb{R}^n .

Proposition

Soient A et X comme ci-dessus. Alors la dimension de l'espace des solutions du système AX=0 est égale au nombre de variable(s) libre(s) dans une forme échelonnée de A.

Proposition

Soient A et X comme ci-dessus. Pour trouver une base de l'espace des solutions du système AX=0, on pose successivement une des variables libres égale à 1 et toutes les autres égales à 0.

Définition

Noyau d'une matrice, $ker(A) = \{X : AX = 0\}$

4.7 La dimension d'un sous-espace

Théorème

Soient V un \mathbb{R} -espace vectoriel avec $\dim V < \infty$ et W un sous-espace vectoriel de V. Alors

- \blacksquare dim $W < \infty$.
- \blacksquare dim $W < \dim V$.
- Si dim $W = \dim V$, alors W = V.

Soit V un espace vectoriel de dimension n et $E \subset V$ un sous-ensemble fini avec m éléments. Quelles affirmations sont toujours vraies ? (plusieurs réponses correctes)

- A. Si m=n alors E est une base de V.
- B. Si m < n alors E ne peut pas engendrer V.
- C. Si m > n alors E est linéairement dépendant.
- D. Aucune des trois affirmations ci-dessus.

Série 5, Exercice 10

L'assertion suivante est-elle correcte (justifier)?

Tout ensemble de vecteurs $\{\vec{v}_1,...,\vec{v}_p\}$ de \mathbb{R}^n est linéairement dépendant si p>n.

4.9 Rang-ligne, rang-colonne d'une matrice

Soient A et B $m \times n$.

Définition

- Le rang ligne de A est dim Lgn(A).
- Le rang colonne de A est $\dim \operatorname{Col}(A)$.

Proposition

Soient A, B des matrices lignes équivalentes. Alors $\operatorname{Lgn} A = \operatorname{Lgn} B$ et le rang ligne de A est égal au rang ligne de B.

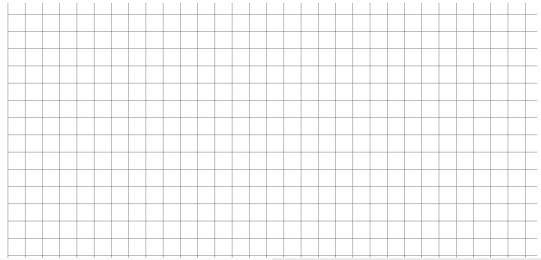
Proposition

Soit A une matrice échelonnée. Alors

- \blacksquare le rang ligne de A est égal au nombre de pivots.
- \blacksquare une base de l'espace ligne de A est donnée par les lignes contenant un pivot.

Série 5, Exercice 9

Soit
$$A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 1 & 2 & 3 & 0 \\ 1 & 2 & 3 & 1 \end{pmatrix}$$
. Trouver une base de $Ker(A)$ et de $Col(A)$.



Série 5, Exercice 9, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 11 / 34

Vrai ou faux? Soit A une matrice de taille $n \times n$ qui est inversible. Alors le rang ligne de A est n.

- A. Vrai
- B. Faux

4.11 Coordonnées par rapport à une base

Définition

Soient $\dim V=n$, $\mathscr{B}=(v_1,\ldots,v_n)$ une base ordonnée de V et $v\in V$. Les scalaires $\alpha_1,\ldots,\alpha_n\in\mathbb{R}$ tels que $v=\alpha_1v_1+\cdots+\alpha_nv_n$ sont appelés coordonnées de v par rapport à la base \mathscr{B} et on écrit

$$[v]_{\mathscr{B}} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}.$$

Les coordonnées d'un vecteur sont uniques.

4.11 Coordonnées par rapport à une base

Proposition

Soient V un \mathbb{R} -espace vectoriel de dimension finie n et $\mathscr{B} = (v_1, \dots, v_n)$ une base ordonnée de V. Alors les deux affirmations suivantes sont vérifiées.

- lacksquare Pour tout $v_1,v_2\in V$, on a $[v_1+v_2]_{\mathscr{B}}=[v_1]_{\mathscr{B}}+[v_2]_{\mathscr{B}}.$
- $\blacksquare \text{ Pour tout } v \in V \text{ et tout } \lambda \in \mathbb{R}, \text{ on a } [\lambda v]_{\mathscr{B}} = \lambda [v]_{\mathscr{B}}.$

Série 5, Exercice 10

(a) On considère le vecteur $\vec{v} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ exprimé dans la base canonique de \mathbb{R}^2 .

Trouver les coordonnées de \vec{v} dans la base $\{\vec{b}_1,\vec{b}_2\}$ de \mathbb{R}^2 , où $\vec{b}_1=\left(\begin{array}{c}1\\2\end{array}\right)$ et \vec{c}_1

$$\vec{b}_2 = \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$$

(b) Même question pour $\vec{v} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ donné dans la base canonique de \mathbb{R}^3 à

exprimer dans la base
$$\{\vec{b}_1,\vec{b}_2,\vec{b}_3\}$$
 donnée par $\vec{b}_1=\begin{pmatrix}1\\0\\1\end{pmatrix}$, $\vec{b}_2=\begin{pmatrix}1\\1\\0\end{pmatrix}$,

$$\vec{b}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
.

Série 5, Exercice 10, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 16 / 34

Quelles sont les coordonnées de la matrice $\begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix}$ par rapport à la base ordonnée

$$\mathcal{B} = \left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \right)?$$

$$A. \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\mathsf{B.} \left(\begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right)$$

$$\mathsf{C.} \left(\begin{array}{c} 2 \\ 1 \\ 0 \\ 3 \end{array} \right)$$

$$\mathsf{D.} \left(\begin{array}{c} 2 \\ 1 \\ 0 \\ 0 \end{array} \right)$$

Question 3, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 18 / 34

4.12 Comment trouver une base à partir d'un système de générateurs

Méthode pour trouver une base à partir d'un système de générateurs

Soient $\dim V = n$ et $\mathscr{B} = (v_1, \ldots, v_n)$ une base de V,

Soient $S = \{w_1, ... w_r\} \subset V$ et W = Vect(S).

Pour trouver une base de W:

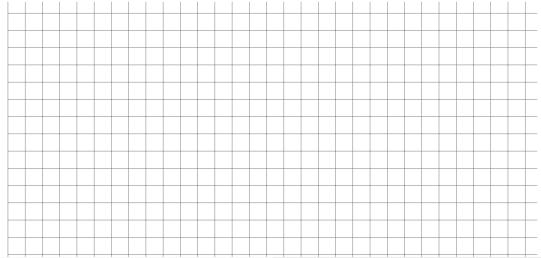
- Pour chaque k = 1, ..., r, on écrit $[w_k]_{\mathscr{B}} = \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{pmatrix}^T$.
- On définit C $r \times n$ avec lignes égales aux vecteurs $[w_k]_{\mathscr{B}}^T = (\alpha_1 \cdots \alpha_n)$.
- \blacksquare On échelonne la matrice C:
 - lacktriangle les lignes non-nulles forment une base de $\operatorname{Lgn} C$.
 - eces lignes sont les coordonnées (par rapport à \mathcal{B}) de vecteurs dans V. Ces derniers forment une base de W.

Pour compléter cette base en une base de V :

lacktriangle On remplace les lignes nulles de la matrice échelonnée par des lignes non-nulles de manière à ce que celle-ci contienne n pivots. Les vecteurs de V associés aux lignes de cette nouvelle matrice forment une base de V.

Série 5, Exercice 9

Soit
$$A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 1 & 2 & 3 & 0 \\ 1 & 2 & 3 & 1 \end{pmatrix}$$
. Trouver une base de $Ker(A)$ et de $Col(A)$.



Série 5, Exercice 9, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 21 / 34

Quelle est la dimension du sous-espace vectoriel de \mathbb{R}^4 suivant?

$$W := \operatorname{Vect}\left(\begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\2\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\2\\1 \end{pmatrix}\right)$$

- A. 1
- B. 2
- **C**. 3
- D. 4

Trouver aussi une base de W et la compléter.

Chapitre 4 : Bases et dimension, calculs à savoir faire.

- Déterminer si un ensemble donné de vecteurs est linéairement indépendant ou pas.
- Trouver une base d'un espace vectoriel donné (extraire une base d'un ensemble générateur, compléter un ensemble de vecteurs libres en une base).
- Trouver la dimension d'un espace vectoriel.
- Trouver une base de l'espace des solutions d'un système linéaire homogène.
- Trouver une base de l'espace colonne et de l'espace ligne d'une matrice.
- Calculer le rang d'une matrice.
- Calculer les coordonnées d'un vecteur par rapport à une base donnée.

Devoirs pour jeudi :

- MOOC 4.13 : faire quelques exercices en ligne.
- MOOC 5.0 5.1 : regarder les vidéos et faire les petits quiz après les vidéos.
- MOOC 5.3 5.4 : regarder les vidéos et faire les petits quiz après les vidéos.

Jeudi

Algèbre linéaire Chapitre 5 : Applications linéaires

Simone Deparis

EPFL Lausanne - MATH

Semaine 5

5.0 Quelques rappels sur les applications

X et Y deux ensembles.

Définition $(f: X \to Y)$

Une application (ou fonction) f de X dans Y, est une règle qui associe à chaque $x \in X$ un unique élément f(x), de Y.

Définition (injective et surjective)

 $f: X \to Y$ est dite *injective* si f(x) = f(x') pour $x, x' \in X$, implique x = x'.

 $f: X \to Y$ est dite *surjective* si pour tout $y \in Y$, il existe $x \in X$ t.q. f(x) = y.

Définition

Soient $f:X \to Y$ et $g:Y \to Z$. La composition de f avec g est l'application $g \circ f:X \to Z$ définie par $(g \circ f)(x)=g(f(x))$, ceci pour tout $x \in X$.

5.1 Applications linéaires d'espaces vectoriels.

Définition

Soient V,W des \mathbb{R} -espaces vectoriels et $T:V\to W$ une application. On dit que T est une application linéaire (ou simplement que T est linéaire) si pour tout $\lambda\in\mathbb{R}$ et tous $u,v\in V$, on a

$$T(\lambda u + v) = \lambda T(u) + T(v).$$

Les propriétés suivantes sont vérifiées.

- $T(0_V) = 0_W$
- T(-v) = -T(v) pour tout $v \in V$.

Supposons que $\dim V = n < \infty$ et que $\mathscr{B} = (v_1, \dots, v_n)$ désigne une base ordonnée de V. Alors T est déterminée par les images $\{T(v_1), \dots, T(v_n)\}$.

5.4 D'autres exemples, généralités l

Soit V un \mathbb{R} -espace vectoriel admettant une base $\mathscr{B}=(v_1,\ldots,v_n)$

Soient W un \mathbb{R} -espace vectoriel arbitraire et $w_1,\ldots,w_n\in W$. On définit l'application linéaire $T:V\to W$ par $T(v_k)=w_k,k=1,...,n$. Alors

$$T(a_1v_1 + \dots + a_nv_n) = a_1w_1 + \dots + a_nw_n, \ (\forall \ a_1, \dots, a_n \in \mathbb{R})$$

L'application $T:V \to \mathbb{R}^n$ définie par

$$T(a_1v_1 + \dots + a_nv_n) = (a_1, \dots, a_n)^T, \ (\forall \ a_1, \dots, a_n \in \mathbb{R})$$

est linéaire. Il s'agit des coordonnées par rapport à la base B.

5.4 D'autres exemples, généralités II

Soient $\mathscr{B}_V=(v_1,\ldots,v_n)$ une base de V et $\mathscr{B}_W=(w_1,\ldots,w_m)$ une base de W .

Soit $A = (\vec{a}_1 \dots \vec{a}_n)$ une matrice $m \times n$, $\vec{a}_n \in \mathbb{R}^m$.

On définit l'application linéaire $T_A:V\to W$ associée à A par

$$[T_A(v)]_{\mathscr{B}_W} = A[v]_{\mathscr{B}_V}$$

On a aussi, pour k = 1, ...n:

$$[T_A(v_k)]_{\mathscr{B}_W} = A[v_k]_{\mathscr{B}_V} = A\vec{e}_k = \vec{a}_k, \text{ où } \vec{e}_k = (0,...,0,1,0,...,0)^T.$$

En d'autres termes :

$$A = (\vec{a}_1 \dots \vec{a}_n) = ([T_A(v_1)]_{\mathscr{B}_W} \dots [T_A(v_n)]_{\mathscr{B}_W})$$

Soit A une matrice de taille $m \times n$. Alors, l'application $T_A \colon \mathbb{R}^n \to \mathbb{R}^m$ définie par $T_A(\vec{x}) = A\vec{x}$ est une application linéaire.

- A. Vrai
- B. Faux

On considere l'application $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ définie par

$$T(a,b) = (a+b, a^2 + b^2).$$

Alors,

- A. T est linéaire,
- B. T n'est pas linéaire.

On considère l'application $T\colon \mathcal{M}_{2 imes 3}(\mathbb{R}) o \mathcal{M}_{3 imes 2}(\mathbb{R})$ définie par $T(A)=A^T.$

Alors,

- A. T est linéaire,
- B. T n'est pas linéaire.

On considère l'application $T\colon \mathcal{M}_{2 imes 2}(\mathbb{R}) o \mathbb{R}^2$ définie par

$$T\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = (a+b, c+d-a+1).$$

Alors,

- A. T est linéaire,
- B. T n'est pas linéaire.

Devoirs pour mardi :

- Regarder les vidéos 5.5 5.10 du MOOC.
- Faire les petits quiz après les vidéos.
- MOOC 5.11 : faire quelques exercices en ligne.

34 / 34