Algèbre linéaire Chapitre 2 Calcul Matriciel

Simone Deparis

EPFL Lausanne - MATH

Semaine 3

Résumé l

Définition

Une matrice élémentaire (de taille $n \times n$) est une matrice obtenue en effectuant une (et une seule) opération élémentaire, de type (I), (II) ou (III), sur les lignes de la matrice I_n . Concrètement, on adoptera les notations suivantes.

- **L** La matrice T_{ij} est la matrice obtenue en échangeant les lignes i et j de I_n .
- La matrice $D_r(\lambda)$ est la matrice obtenue en multipliant la r-ème ligne de I_n par $\lambda \in \mathbb{R}$.
- La matrice $L_{rs}(\lambda)$ est la matrice obtenue en ajoutant λ fois la ligne s à la ligne r de I_n .

Résumé II

Théorème

Soient $A \in M_{m \times n}(\mathbb{R})$ une matrice arbitraire et $E \in M_{m \times m}(\mathbb{R})$ une matrice élémentaire de type (I), (II) ou (III). Alors EA est la matrice obtenue en effectuant sur les lignes de A l'opération de type (I), (II) ou (III), qui définit la matrice E.

Corollaire

Les matrices élémentaires sont inversibles. On a en effet

$$T_{ij}^{-1} = T_{ji} = T_{ij}, \ D_r(\lambda)^{-1} = D_r(\lambda^{-1}), \ L_{rs}(\lambda)^{-1} = L_{rs}(-\lambda).$$

Résumé III

Algorithme pour trouver l'inverse d'une matrice donnée

Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice carrée. Afin de déterminer si A est inversible et de calculer son inverse (lorsque c'est possible), on procède comme suit :

- Ecrire les matrices A et I_n l'une à côté de l'autre, formant ainsi une nouvelle matrice de taille $n \times 2n$.
- Opérer sur les lignes de cette matrice ainsi obtenue afin de réduire le côté gauche à I_n .
- Si l'on y arrive, alors A est inversible et son inverse est donnée par la matrice à droite.

Résumé IV

Corollaire

Soit $A \in M_{n \times n}(\mathbb{R})$. alors les deux affirmations suivantes sont vérifiées.

- La matrice A est inversible si et seulement si il existe $B \in M_{n \times n}(\mathbb{R})$ telle que $BA = I_n$.
- La matrice A est inversible si et seulement si il existe $B \in M_{n \times n}(\mathbb{R})$ telle que $AB = I_n$.

Premier critère d'inversibilité

Une matrice $A \in M_{n \times n}(\mathbb{R})$ est inversible si et seulement si le système homogène AX = 0 possède une solution unique, à savoir, la solution triviale.

Vrai/faux : La matrice $\begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$ est une matrice élémentaire.

- A. Vrai.
- B. Faux.

Vrai/faux : La matrice
$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
 est une matrice élémentaire.

- A. Vrai.
 - B. Faux.

Vrai/faux : La matrice
$$\begin{pmatrix} 1 & 0 & -10 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 est une

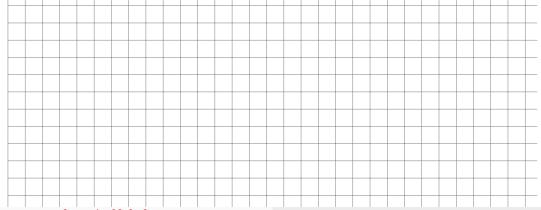
matrice élémentaire.

- A. Vrai
- B. Faux.

Exercice 9

On considère les matrices élémentaires de taille 4×4 .

- (a) Donner la matrice élémentaire qui permet de permuter les lignes 2 et 4.
- (b) Donner la matrice élémentaire qui ajoute cinq fois la ligne 1 à la ligne 3.
- (c) Donner la matrice élémentaire qui multiplie la ligne 3 par 17.
- (d) Donner les inverses des matrices trouvées aux questions (a), (b) et (c).



Exercice 9, solution S. Deparis, SCI-SB-SD EPFL 10 / 44 Algèbre linéaire

Exercice 10

- (a) Calculer l'inverse de la matrice $A = \begin{pmatrix} 2 & 2 \\ 2 & 4 \end{pmatrix}$
 - (i) en utilisant la formule générale de l'inverse d'une matrice 2×2 ;
 - (ii) en mettant la matrice $(A ext{ } I_2)$ sous forme échelonnée réduite.
- (b) Calculer l'inverse de la matrice $A = \begin{pmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{pmatrix}$ en mettant la matrice $A = \begin{pmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{pmatrix}$

matrice $(A \quad I_3)$ sous forme échelonnée réduite.



Exercice 10, solution S. Deparis, SCI-SB-SD EPFL

$$L_{2} + 3.00L_{1} \begin{pmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 3 & 1 & 0 \\ 2 & -3 & 4 & 0 & 0 & 1 \end{pmatrix}$$

$$L_{3} + -2.00L_{1} \begin{pmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 3 & 1 & 0 \\ 0 & -3 & 8 & -2 & 0 & 1 \end{pmatrix}$$

$$L_{3} + 3.00L_{2} \begin{pmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 3 & 1 & 0 \\ 0 & 0 & 2 & 7 & 3 & 1 \end{pmatrix}$$

$$0.50L_{3} \begin{pmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 3 & 1 & 0 \\ 0 & 0 & 1 & 3.5 & 1.5 & 0.5 \end{pmatrix}$$

$$L_{2} + 2.00L_{3} \begin{pmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 10 & 4 & 1 \\ 0 & 0 & 1 & 3.5 & 1.5 & 0.5 \end{pmatrix}$$

$$L_{1} + 2.00L_{3} \begin{pmatrix} 1 & 0 & 0 & 8 & 3 & 1 \\ 0 & 1 & 0 & 10 & 4 & 1 \\ 0 & 0 & 1 & 3.5 & 1.5 & 0.5 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 8 & 3 & 1 \\ 0 & 1 & 0 & 10 & 4 & 1 \\ 0 & 0 & 1 & 3.5 & 1.5 & 0.5 \end{pmatrix}$$

Exercice 11

Déterminer si les matrices suivantes sont inversibles (essayer d'utiliser le moins de calculs possibles, justifier votre réponse).

$$A = \begin{pmatrix} 1 & 2 & 1 & 2 \\ 0 & 0 & 3 & 4 \\ 2 & 4 & 5 & 1 \\ 7 & 14 & -1 & -3 \end{pmatrix},$$

$$B = \begin{pmatrix} 1 & 3 & 0 & -1 \\ 0 & 1 & -2 & -1 \\ -2 & -6 & 3 & 2 \\ 3 & 5 & 8 & -3 \end{pmatrix},$$

$$C = \begin{pmatrix} 1 & -4 & -7 & 3 \\ 0 & 3 & 1 & -2 \\ 0 & 0 & 18 & 3 \\ 0 & 0 & 0 & 17 \end{pmatrix},$$

$$D = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 2 & 5 & 0 & 0 \\ 3 & 6 & 8 & 0 \\ 4 & 7 & 9 & 10 \end{array}\right),$$

$$E = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 1 & 0 & 3 \\ 0 & 2 & 4 \end{array}\right).$$

Exercice 11, solution S. Deparis, SCI-SB-SD EPFL 16 / 44 Algèbre linéaire

$$A^{T} \rightarrow L_{2} + -2.00L_{1}$$

$$L_{2} + -2.00L_{1} \begin{pmatrix} 1.0000 & 0.0000 & 2.0000 & 7.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 1.0000 & 3.0000 & 5.0000 & -1.0000 \\ 2.0000 & 4.0000 & 1.0000 & -3.0000 \end{pmatrix}$$

$$L_{3} + -1.00L_{1} \begin{pmatrix} 1.0000 & 0.0000 & 2.0000 & 7.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 3.0000 & 3.0000 & -8.0000 \\ 2.0000 & 4.0000 & 1.0000 & -3.0000 \end{pmatrix}$$

Calculer, s'il existe, l'inverse de la matrice
$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 3 \\ 1 & 1 & 0 \end{pmatrix}$$
.

La matrice

$$A = \left(\begin{array}{cccc} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 2 \end{array}\right)$$

- A. n'est pas inversible.
- B. est inversible et le coefficient B_{14} de son inverse $B=A^{-1}$ est égal à 1/2.
- C. est inversible et le coefficient B_{14} de son inverse $B=A^{-1}$ est égal à 2.
- D. est inversible et le coefficient B_{14} de son inverse $B=A^{-1}$ est égal à 1.

$$A \to L_4 + -2.00L_1$$

$$\left(\begin{array}{c|cccc} 1.0000 & 0.0000 & 0.0000 & 2.0000 & 1.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 1.0000 & 0.0000 & 0.0000 & 0.0000 & 1.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 1.0000 & 0.0000 & 0.0000 & 0.0000 & 1.0000 & 0.0000 \\ \hline 0.0000 & 0.0000 & 0.0000 & -6.0000 & -2.0000 & 0.0000 & 0.0000 & 1.0000 \\ \hline \end{array} \right)$$

$$\begin{pmatrix} 1.0000 & 0.0000 & 0.0000 & 2.0000 & 1.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 1.0000 & 0.0000 & 0.0000 & 0.0000 & 1.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 1.0000 & 0.0000 & 0.0000 & 1.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 1.0000 & 0.3333 & 0.0000 & 0.0000 & -0.1667 \\ \hline \end{pmatrix}$$

S. Deparis, SCI-SB-SD EPFL

Soit A une matrice $n \times n$ inversible et B une matrice $n \times n$. Alors A et B sont équivalentes selon les lignes si et seulement si B est inversible.

- A. Vrai
- B. Faux

Soit A une matrice $n \times n$. On considère la matrice élémentaire $L_{rs}(5)$ de type (iii). Alors on obtient le produit $L_{rs}(5)A$

- A. en additionnant 5 fois la r-ième ligne à la s-ième ligne de A.
- B. en additionnant 5 fois la s-ième ligne à la r-ième ligne de A.
- C. en additionnant 5 fois la r-ième colonne à la s-ième colonne de A.
- D. en additionnant 5 fois la s-ième colonne à la r-ième colonne de A.

Soit A une matrice $n \times n$ et on considère la matrice élémentaire $L_{rs}(5)$ de type (iii). Alors on obtient le produit $AL_{rs}(5)$

- A. en additionnant 5 fois la r-ième ligne à la s-ième ligne de A.
- B. en additionnant 5 fois la s-ième ligne à la r-ième ligne de A.
- C. en additionnant 5 fois la r-ième colonne à la s-ième colonne de A.
- D. en additionnant 5 fois la s-ième colonne à la r-ième colonne de A.

Chapitre 2 : Algèbre matriciel

Calculs à savoir faire :

- Opérations sur les matrices et leurs propriétés (addition, multiplication avec des scalaires, multiplication matricielle, transposition,...).
- Déterminer si une matrice est inversible et (si elle est inversible) calculer son inverse.
- 3 Connaître les matrices élémentaires et leur relation avec les opérations élémentaires sur les lignes et sur les colonnes.

Devoirs pour jeudi :

- Regarder les vidéos 3.1 3.4 du MOOC.
- Faire les petits quiz après les vidéos.
- Utiliser Ed Discussion!!!

Jeudi

Algèbre linéaire Chapitre 3 Espaces vectoriels

Simone Deparis

EPFL Lausanne - MATH

Semaine 3

Résumé l

Définition

Soit V un ensemble non-vide muni d'une opération binaire + et d'une action des nombres réels \cdot , c'est-à-dire que pour tout $u,v\in V$, il existe un unique élément u+v et pour tout $u\in V,\,\lambda\in\mathbb{R},$ il existe un unique élément $\lambda\cdot v\in V$. On dit que V est un \mathbb{R} -espace vectoriel si les axiomes suivants sont satisfaits, pour tout $u,v,w\in V,\,\lambda,\mu\in\mathbb{R}.$

$$u+v=v+u$$
.

$$u = (u + v) + w = u + (v + w).$$

$$\lambda(u+v) = \lambda u + \lambda v.$$

$$(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v.$$

$$\mathbf{1} \cdot u = u.$$

- Il existe un élément neutre pour la loi +, i.e. un élément $e \in V$ tel que e + u = u pour tout $u \in V$.
- Pour tout $u \in V$, il existe un inverse par rapport à la loi +, i.e. un élément $u' \in V$ tel que u + u' = e.

Résumé II

Remarque

- On écrit λu pour $\lambda \cdot u$.
- lacktriangle On appelle $\lambda \cdot u$ la multiplication par scalaire.
- Les éléments de V sont appelés des *vecteurs* et les éléments de $\mathbb R$ des *scalaires*.

Résumé III

Proposition

Soit V un espace vectoriel. Alors les affirmations suivantes sont vérifiées.

- Si $u, v, w \in V$ sont tels que u + v = u + w, alors v = w.
- Il existe un unique élément neutre pour l'addition, que l'on appelle le vecteur nul et que l'on note 0 ou 0_V .
- Pour tout $u \in V$, il existe un unique $u' \in V$ tel que u + u' = 0. On l'appelle l'*inverse* de u et on le note -u.
- Pour tout $u \in V$ et tout $\lambda \in \mathbb{R}$, on a $0 \cdot u = 0$ et $\lambda \cdot 0 = 0$.
- Pour tout $u \in V$, on a $(-1) \cdot u = -u$.
- Si $v \in V$ et $\lambda \in \mathbb{R}$ sont tels que $\lambda v = 0$, alors $\lambda = 0$ ou v = 0.

Résumé IV

Proposition

Soit $\mathbb{R}^n = \{(x_1, \dots, x_n) : x_1, x_2, \dots, x_n \in \mathbb{R}\}$ et considérons l'addition définie par

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n),$$

ainsi que la multiplication par scalaire donnée par

$$\lambda \cdot (x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n).$$

Alors l'ensemble \mathbb{R}^n , muni des lois définies ci-dessus, est un \mathbb{R} -espace vectoriel. On appelle cet espace vectoriel *l'espace des coordonnées de dimension* n.

Résumé V

Définition

L'ensemble des fonctions polynomiales à coefficients réels de $\mathbb R$ dans $\mathbb R$ est l'ensemble, noté $\mathbb P(\mathbb R)$ constitué des fonctions $f:\mathbb R\to\mathbb R$ telles que $f(x)=a_0+a_1x+\cdots+a_nx^n$ pour un certain $n\in\mathbb N$ et certains $a_0,a_1,\ldots,a_n\in\mathbb R$.

Proposition

L'ensemble $\mathbb{P}(\mathbb{R})$ admet une structure de \mathbb{R} -espace vectoriel.

Résumé VI

Définition

Soit $f\in\mathbb{P}(\mathbb{R})$ une fonction polynomiale de la forme $f=a_0+a_1x+\cdots+a_nx^n$, où $a_n\neq 0$. Alors on appelle l'entier n le degré de f. Le degré du polynôme nul, quant à lui, est égal à $-\infty$ par convention. Aussi, pour $n\in\mathbb{N}$, on désigne par $\mathbb{P}_n(\mathbb{R})$ le sous-ensemble de $\mathbb{P}(\mathbb{R})$ constitué des fonctions polynomiales de degré plus petit ou égal à n.

Proposition

L'ensemble $\mathbb{P}_n(\mathbb{R})$ admet une structure de \mathbb{R} -espace vectoriel.

Notation 5 L'ensemble $\{f: \mathbb{R} \to \mathbb{R}\}$ des fonctions de \mathbb{R} dans \mathbb{R} est désigné par $\mathscr{F}(\mathbb{R})$.

Résumé VII

Proposition

L'ensemble $\mathscr{F}(\mathbb{R})$ admet une structure de \mathbb{R} -espace vectoriel.

Proposition

Soit V un \mathbb{R} -espace vectoriel. Si V contient deux éléments disctincts, alors il en contient une infinité.

Résumé VIII

Définition

Soit V un \mathbb{R} -espace vectoriel et $W \subset V$ un sous-ensemble de V. On dit que W est un sous-espace vectoriel de V si les deux conditions suivantes sont vérifiées.

- $\blacksquare W \neq \emptyset.$
- Pour tout $v, w \in W$ et $\lambda \in \mathbb{R}$, on a $\lambda v + w \in W$.

Proposition

Si W est un sous-espace vectoriel d'un \mathbb{R} -espace vectoriel V, alors W, muni de l'addition et de la multiplication par scalaire de V, est un espace vectoriel.

Vrai/faux : Si A est une matrice $n \times n$ qui n'est pas inversible, alors pour tout $b \in \mathbb{R}^n$ l'équation Ax = b admet soit une infinité de solutions, soit aucune solution.

- A. Vrai
- B. Faux.

Pour que V soit un espace vectoriel

- A. il suffit que V contienne un vecteur nul, $\lambda v \in V$ et $v+w \in V$ pour tout $\lambda \in \mathbb{R}, v,w \in V$.
- B. il est nécessaire que $\lambda v \in V$ pour tout $\lambda \in \mathbb{R}, v \in V$.
- C. il est suffisant que $v+w \in V$ pour tout $v,w \in V$.
- D. Aucunes des précédentes.

Soit $C(\mathbb{R})$ l'ensemble de toutes les fonctions continues de \mathbb{R} vers \mathbb{R} muni de l'addition et de la multiplication par un scalaire usuelles. Alors

- A. $C(\mathbb{R})$ est un espace vectoriel.
- B. $C(\mathbb{R})$ n'est pas un espace vectoriel.

Soit $V=\{f\in C(\mathbb{R})\mid f(x)\leq 1 \text{ pour tout } x\in\mathbb{R}\}$, muni de l'addition et de la multiplication par un scalaire usuelles. Alors

- A. V est un espace vectoriel.
- B. V n'est pas un espace vectoriel.

Vrai/faux: Soient V un espace vectoriel et H un sous-espace vectoriel de V. Alors, V est un sous-espace vectoriel de lui-même et H est un espace vectoriel.

- A. Vrai
- B. Faux.

Soit $\mathcal{M}_{2\times 3}(\mathbb{R})$ l'espace vectoriel des matrices de taille 2×3 . On considère les trois sous-ensembles suivants :

$$\mathcal{E}_1 = \left\{ \begin{pmatrix} u & 0 & v \\ 0 & w & 0 \end{pmatrix} \mid u, v, w \in \mathbb{R} \text{ et } uv = w^2 \right\},$$

$$\mathcal{E}_2 = \left\{ a \begin{pmatrix} 1 & 2 & 7 \\ 5 & \sqrt{2} & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \mid a, b \in \mathbb{R} \right\},$$

$$\mathcal{E}_3 = \left\{ \begin{pmatrix} 0 & x & 1 \\ y & 0 & x - y \end{pmatrix} \mid x, y \in \mathbb{R} \right\}.$$

Lesquels sont des sous-espaces vectoriels de $\mathcal{M}_{2\times 3}(\mathbb{R})$?

- A. seulement \mathcal{E}_2 ,
- B. seulement \mathcal{E}_3 ,
- C. seulement \mathcal{E}_1 ,
- D. seulement \mathcal{E}_2 et \mathcal{E}_3 .

Pour quelles valeurs de $\alpha \in \mathbb{R}$, l'ensemble

$$V = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + 2z = \alpha\}$$

est-il un sous-espace vectoriel de \mathbb{R}^3 ?

- A. Pour tout $\alpha \in \mathbb{R}$.
- B. Pour $\alpha > 0$.
- C. Pour $\alpha = 0$.
- D. Pour $\alpha \neq 0$.

Parmi les quatre sous-ensembles de \mathbb{P}_3 suivants :

$$S_1 = \{ p \in \mathbb{P}_3 \mid p(0) = 2, p(2) = 0 \}$$

$$S_2 = \{ p \in \mathbb{P}_3 \mid p(t) = 2a - at^3, a \in \mathbb{R} \}$$

$$S_3 = \{ p \in \mathbb{P}_3 \mid p'(t) = 0 \text{ pour tout } t \in \mathbb{R} \}$$

$$S_4 = \{ p \in \mathbb{P}_3 \mid p(t) = ct^2 - c^2t, c \in \mathbb{R} \}$$

Combien sont des sous-espaces vectoriels de \mathbb{P}_3 ?

- A. 1
- B. 2
- **C**. 3
- D. 4
- E. 0

Série 3, Exercice 12

Soit $\mathbb F$ l'ensemble des fonctions de $\mathbb R$ dans $\mathbb R$. On définit sur cet ensemble les deux lois suivantes : la loi d'addition $f+g:(f+g)(x)=f(x)+g(x),\ x\in\mathbb R$, et la loi de multiplication par un scalaire $\alpha\in\mathbb R$, $\alpha f:(\alpha f)(x)=\alpha f(x),\ x\in\mathbb R$.

- e) Montrer que F muni des deux lois définies plus haut est un espace vectoriel.
- f) On munit $\mathbb F$ des deux lois définies plus haut. Montrer que $\mathbb P$ est un sous-espace vectoriel de $\mathbb F$.
- g) Montrer que l'ensemble des fonctions continues de \mathbb{R} dans \mathbb{R} , $C(\mathbb{R})$, muni des deux mêmes lois, est un espace vectoriel.
- h) On munit $C\left(\mathbb{R}\right)$ de ces deux mêmes lois. Montrer que

$$C^{1}\left(\mathbb{R}\right)=\left\{ f:\,\mathbb{R}\rightarrow\mathbb{R},\,f\text{ est dérivable de dérivée continue}\right\}$$
 est un sous-espace vectoriel de $C\left(\mathbb{R}\right)$.

Série 3, Exercice 12, solution S. Deparis, SCI-SB-SD EPFL Algèbre linéaire

Devoirs pour mardi :

- Regarder les vidéos 3.4 3.7 du MOOC.
- Faire les petits quiz après les vidéos.
- MOOC 3.8 : faire les exercices en ligne (au moins un par sous-section).
- Regarder le vidéo 4.1 du MOOC.
- Utiliser Ed Discussion et aller aux les séances d'exercices!