Durée : 60 minutes

Algèbre linéaire Test intermédiaire CGC/EL/MX Automne 2024

Réponses

Pour les questions à **choix multiple**, on comptera :

- +3 points si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs réponses,
- -1 point si la réponse est incorrecte.

Pour les questions de type vrai-faux, on comptera :

- +1 point si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs réponses,
- -1 point si la réponse est incorrecte.

Notation

- Pour une matrice A, a_{ij} désigne l'élément situé sur la ligne i et la colonne j de la matrice.
- Pour un vecteur $\vec{x} \in \mathbb{R}^n$, x_i désigne la *i*-ème composante de \vec{x} .
- $-I_m$ désigne la matrice identité de taille $m \times m$.
- $-\mathbb{P}_n$ désigne l'espace vectoriel des polynômes réels de degré inférieur ou égal à n.
- $-M_{m,n}(\mathbb{R})$ désigne l'espace vectoriel des matrices de taille $m \times n$ à coefficients réels.

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question 1: Soient

$$\mathcal{B} = \left\{ \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \right\} \quad \text{et} \quad \mathcal{C} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix} \right\}$$

deux bases de \mathbb{R}^3 . Soit $P = P^{\mathcal{CB}}$ la matrice de passage de la base \mathcal{B} vers la base \mathcal{C} , telle que $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{C}} = P \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$ pour tout $\vec{x} \in \mathbb{R}^3$. Alors la deuxième ligne de P est

$$\begin{bmatrix}
 1 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 1 & -1
 \end{bmatrix}$$

Question 2: Soit $\mathcal{B} = \{2-t, t+t^2, -1+t^3, -1-t+2t^2\}$ une base de \mathbb{P}_3 . La quatrième coordonnée du polynôme $p(t) = t + 2t^2 + 3t^3$ par rapport à la base \mathcal{B} est égale à

$$\square$$
 -7 \square $\frac{1}{7}$ \square -3

Question 3: Soit

$$A = \begin{bmatrix} 1 & 3 & -1 & -4 \\ -2 & -2 & 2 & 0 \\ -3 & -1 & 0 & 2 \\ 5 & 3 & 2 & -1 \end{bmatrix}.$$

Calculer la factorisation LU de la matrice A (en utilisant *seulement* des opérations élémentaires sur les lignes consistant à additionner un multiple d'une ligne à une autre ligne en *dessous*). Alors l'élément ℓ_{43} de la matrice L est donné par

Question 4: Soit $T: \mathbb{R}^2 \to \mathbb{R}^4$ l'application linéaire définie par

$$T\left(\left[\begin{array}{c} x\\y \end{array}\right]\right) = \left[\begin{array}{c} x-y\\x-y\\-5x+6y\\x+y \end{array}\right].$$

Alors

Question 5: Soit

$$A = \begin{bmatrix} 0 & 0 & 0 & 3 & 0 \\ 2 & \sqrt{3} & \pi & 3 & \sqrt{2} \\ 0 & 0 & 0 & 3 & 2 \\ 0 & 0 & \pi & 3 & \sqrt{2} \\ \sqrt{3} & 1 & \pi & 3 & \sqrt{2} \end{bmatrix}.$$

Alors

$$det(A) = -6\pi$$

Question 6: Soit

$$A = \begin{bmatrix} 1 & 2 & 4 & 0 \\ 0 & 1 & 5 & -1 \\ 1 & -1 & 2 & 2 \\ 3 & 1 & 0 & 1 \end{bmatrix}.$$

Alors l'inverse $B = A^{-1}$ de la matrice A est tel que

$$b_{41} = \frac{1}{3}$$

$$b_{33} = \frac{4}{39}$$

$$b_{43} = \frac{2}{3}$$

Question 7: Soit W l'espace vectoriel des matrices symétriques de taille 2×2 et soit $T: \mathbb{P}_2 \to W$ l'application linéaire définie par

$$T(a+bt+ct^2) = \begin{bmatrix} a & b-c \\ b-c & a+b+c \end{bmatrix}$$
 pour tout $a,b,c \in \mathbb{R}$.

Soient

$$\mathcal{B} = \left\{1, 1 - t, t + t^2\right\} \qquad \text{et} \qquad \mathcal{C} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

des bases de \mathbb{P}_2 et W respectivement. La matrice A associée à T par rapport à la base \mathcal{B} de \mathbb{P}_2 et la base \mathcal{C} de W, telle que $[T(p)]_{\mathcal{C}} = A[p]_{\mathcal{B}}$ pour tout $p \in \mathbb{P}_2$, est

$$\begin{bmatrix}
 1 & 0 & 1 \\
 1 & -1 & 0 \\
 0 & 0 & 2
 \end{bmatrix}$$

$$\begin{bmatrix}
 1 & 0 & 1 \\
 1 & -1 & 0 \\
 0 & 0 & 2
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & -1 \\
 1 & 1 & 1
 \end{bmatrix}
 \begin{bmatrix}
 1 & 1 & 0 \\
 0 & -1 & 0 \\
 1 & 0 & 2
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 1 \\
 0 & 0 & -1 \\
 1 & 2 & 0
 \end{bmatrix}$$

$$\blacksquare \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix}
 1 & 0 & 1 \\
 0 & 0 & -1 \\
 1 & 2 & 0
 \end{bmatrix}$$

Question 8: Le système d'équations linéaires

$$\begin{cases} x_1 + 2x_2 + 5x_3 - 4x_4 = 0 \\ x_2 + 2x_3 + x_4 = 7 \\ x_2 + 3x_3 - 5x_4 = -4 \\ 2x_1 + 3x_2 + 4x_3 - 3x_4 = 1 \end{cases}$$

possède une solution unique telle que

$$x_1 = 3$$

$$x_1 = -3$$

Deuxième partie, questions de type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours vraie** ou la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire si elle est parfois fausse).

Question 9: Si A et B sont deux n alors $A + B$ est aussi inversible.	natrices inversibles d	e taille $n \times n$ telles que $A + B$ n'est pas la	matrice nulle,
	☐ VRAI	FAUX	
Question 10: Soit $\{\vec{b}_1, \dots, \vec{b}_m\}$ une possède au moins une solution pour to		st une matrice de taille $m \times n$ telle que l'éq $\operatorname{Col}(A) = \mathbb{R}^m$.	uation $A\vec{x} = \vec{b}_k$
	VRAI	FAUX	
		Si la forme échelonnée réduite de A possèment de $A\vec{x} = \vec{0}$ est un sous-espace vec	
	☐ VRAI	FAUX	
Question 12: Soit <i>A</i> une matrice de tout $\vec{x} \in \mathbb{R}^n$. Si <i>A</i> est telle que $A^5 = 0$,		$\mathbb{R}^n o \mathbb{R}^n$ l'application linéaire définie par T	$\vec{x}(\vec{x}) = A\vec{x}$, pour
	☐ VRAI	FAUX	
Question 13: Soient V et W deux esp Si dim(Ker T) = dim V , alors Im T =		t $T: V \to W$ une application linéaire.	
	VRAI	FAUX	
Question 14: Soit q un polynôme de	degré 3 quelconque.	Alors l'ensemble	
est un sous-espace vectoriel de \mathbb{P}_3 .	$\{p\in\mathbb{P}_3:q(0)\}$	$-p(0)=0\big\}$	
est un sous espuee vectorier de 13.	☐ VRAI	FAUX	
Question 15: Soit $A \in M_{4,4}(\mathbb{R})$ une malors $A\vec{u}, A\vec{v}, A\vec{w}$ sont linéairement inc		$,\vec{v},\vec{w}$ sont des vecteurs linéairement indépe	ndants dans \mathbb{R}^4 ,
	☐ VRAI	FAUX	
Question 16: Soit W le sous-espace deux polynômes $p_5, p_6 \in \mathbb{P}_5$ tels que l		andré par $p_1, p_2, p_3, p_4 \in \mathbb{P}_5$. Si dim $(W) = \{p_2, p_3, p_4, p_5, p_6\}$ est une base de \mathbb{P}_5 .	1, alors il existe
	VRAI	FAUX	