En classe

1. Donner une base et la dimension du sous-espace vectoriel de \mathbb{R}^4 formé des solutions du système d'équations linéaires homogènes

$$\begin{cases} x+y+z = 0\\ 2x+y + u = 0 \end{cases}$$

2. Donner une base et la dimension des sous-espaces vectoriels de \mathbb{R}^3 de l'exercice 4a) de la série 7:

$$W_1 = \left\{ (x,y,z) \in \mathbb{R}^3: \ x = y \right\} \hspace{1cm} \text{et} \hspace{1cm} W_2 = \left\{ (x,y,2x-y) \in \mathbb{R}^3: \ x,y \in \mathbb{R} \right\}$$

- 3. a) Calculer le rang de la matrice $A = \begin{bmatrix} 1 & 2 & 1 & 3 & 5 \\ 2 & -1 & -3 & 0 & 3 \\ 3 & 0 & -3 & 2 & 7 \end{bmatrix}$.
 - **b**) Donner une base de Lgn(A), le sous-espace des lignes de la matrice A.
 - \mathbf{c}) Donner une base de Col(A), le sous-espace des colonnes de la matrice A.
 - **d**) Déterminer la dimension et donner une base de Nul(A), le sous-espace vectoriel de \mathbb{R}^5 engendré par les solutions du système d'équations linéaires homogènes $A\vec{x} = \vec{0}$.
- **4.** Déterminer la dimension et donner une base de Lgn(A), Nul(A), Col(A), Lgn(B), Nul(B) et Col(B) où

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 2 & 2 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

5. L'ensemble des solutions du système linéaire

$$\begin{cases} x_1 - x_2 + 3x_3 = 0 \\ 2x_1 - x_3 = 0 \\ 3x_1 - x_2 + 2x_3 = 0 \end{cases}$$

est:

- \square l'ensemble vide \square un sous-espace vectoriel de \mathbb{R}^3 de dimension 1 \square un ensemble contenant un seul point \square un sous-espace vectoriel de \mathbb{R}^3 de dimension 2
- **6.** Soit $a \in \mathbb{R}$. L'ensemble de polynômes $\{7t^2, 4+2t+t^2, at+2\}$ n'est pas une base de \mathbb{P}_2 si

7. Soit $\mathcal{B} = \left\{1 - t^2, t - t^2, 2 - 2t + t^2\right\}$ une base de \mathbb{P}_2 .

Le vecteur des coordonnées du polynôme $p(t)=3-2t^2$ dans la base ${\mathcal B}$ est

→ Tourner la page s. v. p.

8. Soit A une matrice de taille $m \times n$ et E une matrice élémentaire de taille $m \times m$.

Déterminer si les affirmations suivantes sont vraies ou fausses et justifier votre réponse:

a) Col(EA) = Col(A)

b) Lgn(EA) = Lgn(A)

 \mathbf{c}) Nul(EA) = Nul(A)

9. Déterminer si les affirmations suivantes sont vraies ou fausses et justifier votre réponse:

a) Si les vecteurs ligne de la matrice *A* sont linéairement indépendants de même que les vecteurs colonne de *A*, alors la matrice *A* est carrée.

b) Si *A* est une matrice de taille $m \times n$ telle que rang(A) = m, alors l'application linéaire $\vec{x} \longmapsto A\vec{x}$ est injective.

c) Si A est une matrice de taille $m \times n$ telle que l'application linéaire $\vec{x} \longmapsto A\vec{x}$ est surjective, alors $\operatorname{rang}(A) = m$.

A domicile

10. Donner une base et la dimension du sous-espace vectoriel de \mathbb{R}^4 formé des solutions du système d'équations linéaires homogènes

$$\begin{cases} x + 2y + 3z + 4u = 0 \\ 4x + 5y + 6z + 7u = 0 \\ 4x + 2y - 2u = 0 \\ x - y - 3z - 5u = 0 \end{cases}$$

11. Déterminer la dimension du sous-espace vectoriel W de $F(\mathbb{R},\mathbb{R})$ engendré par les fonctions

$$f_1(x) = 1$$
, $f_2(x) = \cos(2x)$, $f_3(x) = \cos^2(x)$.

12. a) Montrer que les polynômes suivants sont linéairement indépendants:

$$p_1(x) = x + 1$$
, $p_2(x) = x^2 + 2$, $p_3(x) = x^2 + x$

b) Montrer que l'ensemble $\{p_1, p_2, p_3\}$ est une base de l'espace vectoriel \mathbb{P}_2 .

c) Calculer les coefficients du polynôme $p(x) = x^2 + 5$ par rapport à cette base.

d) Compléter cette base de \mathbb{P}_2 pour obtenir une base de \mathbb{P}_3 .

13. Déterminer les valeurs du paramètre $\lambda \in \mathbb{R}$ pour lesquelles les polynômes

$$(\lambda^2 - 1)x^3 + x$$
, $x + \lambda$ et $(\lambda + 1)x^3 + 1$

sont linéairement indépendants. Est-ce qu'ils forment une base de l'espace vectoriel \mathbb{P}_3 ?

14. a) Déterminer le rang de la matrice $A = \begin{bmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 3 & 1 & 4 & -3 \\ 1 & 0 & 2 & 5 & -3 \end{bmatrix}$.

b) Donner une base de Lgn(A).

 \mathbf{c}) Donner une base de $\operatorname{Col}(A)$.

d) Déterminer la dimension et donner une base de Nul(A).

15. Déterminer la dimension et donner une base de Lgn(A), Nul(A), Col(A), Lgn(B), Nul(B), Col(B), Lgn(C), Nul(C) et Col(C) où

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 4 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 3 & 4 \\ 2 & 2 & 2 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 4 & 5 & 0 & 9 \\ 2 & 3 & 5 & 1 & 8 \\ 3 & 1 & 4 & 6 & 5 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}.$$