17 octobre 2024

En classe

1. Soient
$$A = \begin{bmatrix} 1 & -2 & 3 \\ -3 & 10 & -9 \\ 0 & 24 & 5 \end{bmatrix}$$
 et $\vec{b} = \begin{bmatrix} 3 \\ -5 \\ 9 \end{bmatrix}$.

- a) Calculer la factorisation LU de la matrice A
- **b**) Utiliser cette factorisation pour résoudre l'équation $A\vec{x} = \vec{b}$.
- **2.** Calculer le déterminant des matrices élémentaires suivantes et décrire l'opération élémentaire sur les lignes associée:

a)
$$\begin{bmatrix} 1 & 0 \\ 7 & 1 \end{bmatrix}$$
 b) $\begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix}$ **c)** $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ **d)** $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 8 \\ 0 & 0 & 1 \end{bmatrix}$ **e)** $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ **f)** $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

3. Calculer le déterminant des matrices suivantes:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & -2 & 3 \\ 2 & 5 & -1 \end{bmatrix}, \qquad B = \begin{bmatrix} 3 & 0 & 9 & 6 \\ 2 & 4 & -5 & 0 \\ 1 & 2 & -3 & 4 \\ 0 & 1 & 3 & 5 \end{bmatrix}.$$

4. Calculer le déterminant des matrices suivantes:

$$A = \begin{bmatrix} d & e & f \\ g & h & k \\ a & b & c \end{bmatrix}, \qquad B = \begin{bmatrix} -a & -b & -c \\ 2d & 2e & 2f \\ -g & -h & -k \end{bmatrix}, \qquad C = \begin{bmatrix} a - 3d & b - 3e & c - 3f \\ g & h & k \\ d & e & f \end{bmatrix},$$

en utilisant le fait que $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & k \end{vmatrix} = 5.$

5. Calculer la factorisation LU de la matrice

$$A = \begin{bmatrix} -3 & 2 & 0 & 1 & -1 \\ 3 & -4 & 1 & 2 & 3 \\ -6 & 4 & -1 & 2 & 1 \\ -12 & 12 & -5 & 0 & -2 \\ 9 & -8 & 1 & 4 & 2 \end{bmatrix}.$$

La matrice L ainsi obtenue est telle que

6. Le déterminant de la matrice

$$A = \begin{bmatrix} 2 & 0 & 0 & 3 \\ -4 & 1 & -2 & -1 \\ -3 & -2 & -1 & -4 \\ 4 & 0 & 3 & 1 \end{bmatrix}$$

est égal à

$$-65$$
 -13 13 65

- 7. Déterminer si les affirmations suivantes sont vraies ou fausses et justifier votre réponse:
 - a) Si $det(A) \neq 0$, alors la matrice A peut s'écrire comme un produit de matrices élémentaires.
 - **b**) Si A et B sont des matrices carrées de taille $n \times n$, alors $\det(A + B) = \det(A) + \det(B)$.
 - **c**) Si *A* est une matrice carrée de taille $n \times n$, alors $\det(A^2) = (\det(A))^2$.
 - **d**) Si *A* est une matrice carrée de taille $n \times n$, alors $\det(A^T A) \ge 0$.
 - **e**) Si *A* est une matrice carrée de taille $n \times n$, alors $\det(-A) = -\det(A)$.

A domicile

- **8.** Soit *A* une matrice de taille $m \times n$.
 - **a**) Montrer que si CA = I alors l'équation homogène $A\vec{x} = \vec{0}$ ne possède que la solution triviale. Expliquer pourquoi dans ce cas la matrice A ne peut pas avoir plus de colonnes que de lignes.
 - **b**) Montrer que si AD = I alors l'équation $A\vec{x} = \vec{b}$ est consistante pour chaque vecteur $\vec{b} \in \mathbb{R}^m$. Expliquer pourquoi dans ce cas la matrice A ne peut pas avoir plus de lignes que de colonnes.
- 9. Soient $A = \begin{bmatrix} 2 & 1 & -1 \\ -4 & 3 & 3 \\ 6 & 8 & -3 \end{bmatrix}$ et $\vec{b} = \begin{bmatrix} 3 \\ -13 \\ 4 \end{bmatrix}$.
 - a) Calculer la factorisation LU de la matrice A
 - **b**) Utiliser cette factorisation pour résoudre l'équation $A\vec{x} = \vec{b}$.
- **10.** a) Calculer la factorisation LU des matrices suivantes

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 8 & 11 \\ 3 & 8 & 14 & 20 \\ 4 & 11 & 20 & 30 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 2 & -3 & 0 \\ 0 & -1 & 3 & 1 \\ 3 & -8 & 3 & 2 \\ 1 & -2 & 3 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -2 & 1 & 1 \\ 0 & -3 & -2 & 1 \\ 3 & -3 & 2 & -1 \\ 0 & 4 & -3 & 0 \end{bmatrix}.$$

- b) Utiliser la factorisation LU de la partie a) pour calculer les déterminants de A, B et C.
- 11. Calculer le déterminant des matrices suivantes

$$A = \begin{bmatrix} 3 & 1 & 5 \\ 4 & 2 & -3 \\ 1 & 3 & -1 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \qquad C = \begin{bmatrix} 6 & 1 & 1 & 1 \\ 1 & 6 & 1 & 1 \\ 1 & 1 & 6 & 1 \\ 1 & 1 & 1 & 6 \end{bmatrix}.$$

12. Soient a, b, c, d des nombres réels. Calculer le déterminant des matrices suivantes:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix}, \qquad B = \begin{bmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{bmatrix}.$$

13. a) Calculer le déterminant de la matrice

$$A = \left[\begin{array}{ccc} x & 1 & 1 \\ 1 & x & -1 \\ -1 & -1 & x \end{array} \right]$$

b) Déterminer les valeurs de x pour lesquelles la matrice A n'est pas inversible.