En classe

			_				
1.	Déterminer	lesquelles	des a	applications	suivantes	sont linéaire	s:

a)
$$T: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto \cos(x)$

b)
$$T: \mathbb{R} \longrightarrow \mathbb{R}$$
 $x \longmapsto 2x+3$

b)
$$T: \mathbb{R} \longrightarrow \mathbb{R}$$
 c) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $(x,y) \longmapsto (x-5y, 3x)$

- 2. Déterminer les matrices associées aux applications linéaires suivantes et calculer ensuite l'image d'un vecteur quelconque $(x, y) \in \mathbb{R}^2$:
 - **a**) rotation $\rho: \mathbb{R}^2 \to \mathbb{R}^2$ d'angle π dans le sens positif,
 - **b)** symétrie $\sigma: \mathbb{R}^2 \to \mathbb{R}^2$ par rapport à la droite y = x.
- Si $S: \mathbb{R}^p \to \mathbb{R}^n$ et $T: \mathbb{R}^n \to \mathbb{R}^m$ sont deux transformations, alors la composition de S avec T, 3. notée $T \circ S$, est définie par

$$(T \circ S)(\vec{u}) = T(S(\vec{u})), \quad \text{pour tout } \vec{u} \in \mathbb{R}^p.$$

Montrer que si S et T sont des applications linéaires, alors $T \circ S$ est aussi une application linéaire.

- Calculer la matrice associée à chacune des applications linéaires suivantes et déterminer si les 4. applications linéaires sont injectives, surjectives ou bijectives:
 - **a)** $T: \mathbb{R}^2 \to \mathbb{R}^2$ donnée par T(x, y) = (2y, 3x)
 - **b)** $T: \mathbb{R}^2 \to \mathbb{R}^2$ donnée par T(x, y) = (5x y, 0)
 - **c**) $T: \mathbb{R}^3 \to \mathbb{R}^2$ donnée par T(x, y, z) = (x + y, x z)
 - **d)** $T: \mathbb{R}^2 \to \mathbb{R}^3$ donnée par T(x,y) = (y, x, x-y)
 - **e**) $T: \mathbb{R}^2 \to \mathbb{R}^3$ donnée par T(x,y) = (x-y, y-x, 2x-2y)
 - **f**) $T: \mathbb{R}^3 \to \mathbb{R}^2$ donnée par T(x, y, z) = (x + y + z, x y z)
- **a**) Calculer la matrice associée à l'application linéaire $T: \mathbb{R}^4 \to \mathbb{R}^3$ donnée par 5.

$$T(x, y, z, u) = (x + 3y + 5z + 7u, -x + 3y, x + 2y + 3z + 7u)$$

- **b**) Déterminer si l'application linéaire T est injective, surjective ou bijective.
- **c**) Déterminer ensuite tous les vecteurs $(x, y, z, u) \in \mathbb{R}^4$ tels que T(x, y, z, u) = (0, 0, 0).
- L'application linéaire $T: \mathbb{R}^3 \to \mathbb{R}^4$ donnée par 6.

- est bijective
- est surjective mais pas injective
- n'est ni surjective ni injective
- L'application linéaire $T: \mathbb{R}^3 \to \mathbb{R}^3$ donnée par

$$T(x,y,z) = (x+3y-5z, 3x+4y+5z, 4x+7y)$$

	est injective	mais	pas	surjective
--	---------------	------	-----	------------

est	hii	iect	ive

est surjective mais pas injective

n'est n	i surjective	ni injective

- 8. Déterminer si les affirmations suivantes sont vraies ou fausses et justifier votre réponse:
 - **a**) Si $\{\vec{v}_1, \vec{v}_2\}$ est un ensemble linéairement indépendant de \mathbb{R}^n et $T: \mathbb{R}^n \to \mathbb{R}^m$ est une application linéaire, alors $\{T(\vec{v}_1), T(\vec{v}_2)\}$ est un ensemble linéairement indépendant de \mathbb{R}^m .
 - **b**) Si $\{\vec{v}_1, \vec{v}_2\}$ est un ensemble linéairement dépendant de \mathbb{R}^n et $T: \mathbb{R}^n \to \mathbb{R}^m$ est une application linéaire, alors $\{T(\vec{v}_1), T(\vec{v}_2)\}$ est un ensemble linéairement dépendant de \mathbb{R}^m .
 - **c**) Soit $T: \mathbb{R}^n \to \mathbb{R}^m$ une application linéaire. Si les vecteurs $\vec{v}_1, \dots, \vec{v}_k$ engendrent \mathbb{R}^n et sont tels que $T(\vec{v}_i) = \vec{0}$ pour tout $j \in \{1, ..., k\}$, alors $T(\vec{v}) = \vec{0}$ pour tout $\vec{v} \in \mathbb{R}^n$.
 - **d**) Si $T: \mathbb{R}^n \to \mathbb{R}^m$ est telle que $T(\vec{0}) = \vec{0}$, alors T est une application linéaire.
 - e) Si $T(\lambda \vec{u} + \mu \vec{v}) = \lambda T(\vec{u}) + \mu T(\vec{v})$ pour tout $\vec{u}, \vec{v} \in \mathbb{R}^n$ et $\lambda, \mu \in \mathbb{R}$, alors $T : \mathbb{R}^n \to \mathbb{R}^m$ est une application linéaire.

A domicile

- 9. Déterminer lesquelles des applications suivantes sont linéaires:

- **a)** $T: \mathbb{R} \longrightarrow \mathbb{R}$ **b)** $T: \mathbb{R} \longrightarrow \mathbb{R}^2$ **c)** $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $(x,y) \longmapsto (x+y, 2x-3y)$ **d)** $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ **e)** $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^2$ $(x,y,z) \longmapsto (2x-z,x+y)$ $(x,y,z,u) \longmapsto (2x+u,y-z+1)$
- 10. Déterminer les matrices associées aux applications linéaires suivantes et calculer ensuite l'image d'un vecteur quelconque $(x, y) \in \mathbb{R}^2$:
 - **a**) rotation $\rho: \mathbb{R}^2 \to \mathbb{R}^2$ d'angle $\frac{\pi}{4}$ dans le sens positif,
 - **b**) symétrie $\sigma: \mathbb{R}^2 \to \mathbb{R}^2$ par rapport à la droite y = -x.
- Soient $\vec{v}_1, \dots, \vec{v}_k$ des vecteurs linéairement indépendants de \mathbb{R}^n et soit $T : \mathbb{R}^n \to \mathbb{R}^m$ une application 11. linéaire. Montrer que si T est injective, alors $\{T(\vec{v}_1), \dots, T(\vec{v}_k)\}$ est un ensemble linéairement indépendant de \mathbb{R}^m .
- **a**) Calculer la matrice associée à l'application linéaire $T: \mathbb{R}^3 \to \mathbb{R}^4$ donnée par 12. T(x,y,z) = (2x-2y+4z, 5x-4y+7z, 3x-2y+3z, x-y+2z)
 - **b**) Déterminer si l'application linéaire T est injective, surjective ou bijective.
 - **c**) Déterminer ensuite tous les vecteurs (x,y,z) tels que T(x,y,z) = (0,0,0,0).
- a) Calculer la matrice associée à l'application linéaire $T: \mathbb{R}^3 \to \mathbb{R}^4$ donnée par **13.** T(x,y,z) = (2x-2y+4z, 5x-4y+7z, 3x-2y+4z, x-y+2z)
 - **b**) Déterminer si l'application linéaire T est injective, surjective ou bijective.
 - **c**) Déterminer ensuite tous les vecteurs (x,y,z) tels que T(x,y,z) = (0,0,0,0).
- Soit $T: \mathbb{R}^n \to \mathbb{R}^m$ une application linéaire. 14.

Déterminer la condition nécessaire que doivent satisfaire m et n pour que

- **a**) T soit surjective,
- **b**) T soit injective,
- **c**) T soit bijective.

- Soit $T: \mathbb{R}^n \to \mathbb{R}^n$ une application linéaire. **15.**
 - **a)** Montrer que si T est surjective, alors T est aussi injective.
 - **b)** Montrer que si T est injective, alors T est aussi surjective.