En classe

- Donner la dimension et trouver une base du complément orthogonal W^{\perp} du sous-espace vectoriel 1. $W = \text{Vect}\{(1,0,0,1),(1,0,1,0)\}.$
- 2. Montrer que les vecteurs

$$\vec{v}_1 = (1, 1, 1), \quad \vec{v}_2 = (1, 0, -1) \quad \text{et} \quad \vec{v}_3 = (1, -2, 1)$$

forment une base orthogonale de \mathbb{R}^3 .

Déterminer les coordonnées du vecteur $\vec{x} = (3, 1, 4)$ par rapport à cette base.

3. Montrer que les vecteurs

$$\vec{v}_1 = (1,0,-1), \quad \vec{v}_2 = (1,-4,1) \quad \text{et} \quad \vec{v}_3 = (4,2,4)$$

forment une base orthogonale de \mathbb{R}^3 .

Déterminer les coordonnées du vecteur $\vec{x} = (6, 4, -2)$ par rapport à cette base.

4. Considérer les vecteurs

$$\vec{u} = (1,2,2)$$
 et $\vec{v} = (-2,3,2)$

- **a**) Calculer $\vec{u} \cdot \vec{v}$, $||\vec{u}||$ et $||\vec{v}||$.
- **b**) Calculer la distance entre \vec{u} et \vec{v} .
- **c**) Calculer $\operatorname{proj}_{\vec{v}} \vec{u}$ et $\operatorname{proj}_{\vec{u}} \vec{v}$.
- Soit $W = \text{Vect}\{(1,2,1),(-1,1,-1)\}$. Calculer la projection orthogonale du vecteur $\vec{y} = (2,1,3)$ 5. sur W et déterminer la distance entre \vec{y} et W.
- 6. Soit A la matrice

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix}$$

et soit $W=\mathrm{Nul}(A)$. Alors W^\perp est formé des vecteurs $\vec{v}\in\mathbb{R}^3$ dont les composantes v_1,v_2,v_3 satisfont

$$\square \left\{ \begin{array}{c} v_1 + v_2 = 0 \\ v_2 - v_3 = 0 \end{array} \right.$$

Soient $\vec{u} = (1, -2, 1)$ et $\vec{v} = (-3, 1, -1)$. Alors nous avons

$$=-\vec{u}$$

	$\operatorname{proj}_{\vec{v}} \vec{u} =$	$-\vec{v}$
--	---	------------

- **8.** Déterminer si les affirmations suivantes sont vraies ou fausses et justifier votre réponse:
 - a) Si deux vecteurs sont orthogonaux, alors ils sont linéairement indépendants.
 - b) Si deux vecteurs sont orthonormaux, alors ils sont linéairement indépendants.
 - **c**) Si \vec{x} est orthogonal à \vec{u} et à \vec{v} , alors \vec{x} est orthogonal à $\vec{u} \vec{v}$.
 - **d**) Si W est un sous-espace vectoriel de \mathbb{R}^n , alors W et W^{\perp} n'ont pas de vecteurs en commun.
 - **e**) Si W est un sous-espace vectoriel de \mathbb{R}^n , alors

$$\|\operatorname{proj}_W \vec{v}\|^2 + \|\vec{v} - \operatorname{proj}_W \vec{v}\|^2 = \|\vec{v}\|^2.$$

A domicile

9. Considérer les vecteurs

$$\vec{u} = (3, -4, -1)$$
 et $\vec{v} = (-8, -7, 4)$

Calculer $\vec{u} \cdot \vec{v}$, $||\vec{u}||^2$, et $||\vec{u} + \vec{v}||^2$. Vérifier la validité du théorème de Pythagore.

- 10. Trouver une base du complément orthogonal des sous-espaces vectoriels de \mathbb{R}^3 suivants
 - **a**) $W_1 = \text{Vect}\{(1,2,-1)\}$
 - **b**) $W_2 = \text{Vect}\{(1,1,1), (-1,1,3)\}$
- 11. Donner la dimension et trouver une base du complément orthogonal W^{\perp} du sous-espace vectoriel

$$W = \mathrm{Vect} \big\{ (1,1,1,0), (-1,0,1,1), (0,1,-1,1) \big\} \,.$$

12. Montrer que les vecteurs

$$\vec{v}_1 = (4, -4, 0), \quad \vec{v}_2 = (2, 2, -1) \quad \text{et} \quad \vec{v}_3 = (1, 1, 4)$$

forment une base orthogonale de \mathbb{R}^3 .

Déterminer les coordonnées du vecteur $\vec{x} = (3, -4, 7)$ par rapport à cette base.

13. Montrer que les vecteurs

$$\vec{v}_1 = (1, 1, 1, 1), \quad \vec{v}_2 = (1, -1, 1, -1), \quad \vec{v}_3 = (-1, 0, 1, 0) \quad \text{et} \quad \vec{v}_4 = (0, 1, 0, -1)$$

forment une base orthogonale de \mathbb{R}^4 .

Déterminer les coordonnées du vecteur $\vec{x} = (1, 2, 3, 4)$ par rapport à cette base.

- **14.** Soit $W = \text{Vect}\{(1,1,1,1), (-1,-1,1,1), (-1,1,-1,1)\}$. Calculer la projection orthogonale du vecteur $\vec{y} = (2,3,5,6)$ sur W et déterminer la distance entre \vec{y} et W.
- **15.** Soit $\vec{x} \in \mathbb{R}^n$ un vecteur non-nul donné.
 - **a**) Montrer que l'application $T: \mathbb{R}^n \to \mathbb{R}^n$ définie par

$$T(\vec{v}) = \operatorname{proj}_{\vec{v}} \vec{v}$$
, pour tout $\vec{v} \in \mathbb{R}^n$,

est une application linéaire.

b) Déterminer la dimension et donner une base du noyau et de l'image de T.