Combinations linéaires

Définition. Soit V un espace vectoriel. Un vecteur \vec{v} de V est une combinaison linéaire des vecteurs \vec{v}_1 , \vec{v}_2 ,..., \vec{v}_n de V s'il peut s'écrire sous la forme

$$\vec{v} = \alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \dots + \alpha_n \vec{v}_n, \quad \text{avec } \alpha_1, \ \alpha_2, \dots, \ \alpha_n \in \mathbb{R}.$$

Les nombres $\alpha_1, \alpha_2, ..., \alpha_n$ sont appelés *poids* (ou *coefficients*) de la combinaison linéaire.

Exemples

1. Soit $V = \mathbb{R}^3$ et soient $\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$. Comme

le vecteur \vec{v} est combinaison linéaire de \vec{v}_1 et \vec{v}_2 avec poids respectifs $\alpha_1 = 3$ et $\alpha_2 = 2$.

2. Soit $V = \mathbb{P}_2$ et soient $p_1(x) = 2x^2 + 3$, $p_2(x) = x^2 - x$. Comme

$$4p_1(x) + (-8)p_2(x) = 4(2x^2 + 3) + (-8)(x^2 - x) = 8x + 12$$

le polynôme p(x) = 8x + 12 est combinaison linéaire de p_1 et p_2 avec poids respectifs $\alpha_1 = 4$ et $\alpha_2 = -8$.

Indépendance linéaire

Définition. Soit V un espace vectoriel. Soient $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ des vecteurs de V.

Les vecteurs $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ sont linéairement indépendants (ou libres) si la seule solution de l'équation

$$x_1\vec{v}_1 + x_2\vec{v}_2 + \dots + x_n\vec{v}_n = \vec{0}$$

est la solution nulle (ou triviale):

$$x_1 = 0, x_2 = 0, ..., x_n = 0.$$

Si par contre, il existe des poids $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}$ non tous nuls tels que

$$\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \dots + \alpha_n \vec{v}_n = \vec{0} \tag{*}$$

on dit que les vecteurs sont linéairement dépendants (ou liés) et dans ce cas, (\star) est appelée une relation de dépendance linéaire.

Remarque. Tout ensemble de vecteurs qui contient le vecteur $\vec{0}$ est toujours linéairement dépendant car

$$\mathbf{1} \cdot \vec{0} + 0 \vec{v}_1 + 0 \vec{v}_2 + \dots + 0 \vec{v}_n = \vec{0}$$
 et $(\mathbf{1}, 0, 0, \dots, 0) \neq (0, 0, 0, \dots, 0)$.

Exemples

1. Soit $V = \mathbb{R}^3$. Les vecteurs

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

sont linéairement indépendants. En effet,

$$\alpha_{1}\vec{v}_{1} + \alpha_{2}\vec{v}_{2} + \alpha_{3}\vec{v}_{3} = \vec{0} \iff \alpha_{1}\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} + \alpha_{2}\begin{bmatrix} 2\\1\\0\\0 \end{bmatrix} + \alpha_{3}\begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$$

$$\iff \begin{bmatrix} \alpha_{1} + 2\alpha_{2}\\\alpha_{2}\\\alpha_{3} \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$$

$$\iff \begin{bmatrix} \alpha_{1} + 2\alpha_{2}\\\alpha_{2}\\\alpha_{3} \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$$

$$\iff \begin{bmatrix} \alpha_{1} + 2\alpha_{2}\\\alpha_{2}\\\alpha_{3} \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$$

$$\iff \begin{bmatrix} \alpha_{1}\\\alpha_{2}\\\alpha_{3} \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$$

2. Par contre, les vecteurs

$$\vec{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \vec{w}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \quad \vec{w}_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

sont linéairement dépendants. En effet,

$$\alpha_{1}\vec{w}_{1} + \alpha_{2}\vec{w}_{2} + \alpha_{3}\vec{w}_{3} = \vec{0} \iff \alpha_{1}\begin{bmatrix} 1\\0\\0 \end{bmatrix} + \alpha_{2}\begin{bmatrix} 2\\1\\0 \end{bmatrix} + \alpha_{3}\begin{bmatrix} 0\\1\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

$$\iff \begin{bmatrix} \alpha_{1} + 2\alpha_{2}\\\alpha_{2} + \alpha_{3}\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

$$\iff \begin{cases} \alpha_{1} + 2\alpha_{2} &= 0\\\alpha_{2} + \alpha_{3} &= 0 \end{cases} \iff \begin{cases} \alpha_{1} = -2\alpha_{2}\\\alpha_{3} = -\alpha_{2} \end{cases}$$

$$\iff \begin{bmatrix} \alpha_{1}\\\alpha_{2}\\\alpha_{3} \end{bmatrix} = t \begin{bmatrix} -2\\1\\-1 \end{bmatrix} \quad \text{avec } t \in \mathbb{R}$$

Nous avons la relation de dépendance linéaire :

$$(-2)\vec{w}_1 + 1\vec{w}_2 + (-1)\vec{w}_3 = \vec{0}$$
.

3. Soit $V = \mathbb{P}_2$. Les polynômes

$$p_1(x) = 1$$
, $p_2(x) = x$, $p_3(x) = x^2$, avec $x \in \mathbb{R}$,

sont linéairement indépendants. En effet,

$$\begin{array}{lll} \alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 p_3 = 0 & \iff & \alpha_1 \, 1 + \alpha_2 \, x + \alpha_3 \, x^2 = 0 & \text{pour tout } x \in \mathbb{R} \\ & \iff & \left\{ \begin{array}{l} \alpha_1 = 0 \\ \alpha_2 = 0 \\ \alpha_3 = 0 \end{array} \right. \end{array}$$

Par contre, les polynômes

$$q_1(x) = x^2 - 2x$$
, $q_2(x) = x^2 + 3$, $q_3(x) = 2x + 3$, avec $x \in \mathbb{R}$,

sont linéairement dépendants car

$$1q_1(x) + (-1)q_2(x) + 1q_3(x) = 0.$$

4. Soit $V = F(\mathbb{R}, \mathbb{R})$. Les fonctions

$$f_1(x) = \cos(x)$$
 et $f_2(x) = \sin(x)$

sont linéairement indépendantes. En effet, si

$$\alpha_1 \cos(x) + \alpha_2 \sin(x) = 0$$
 pour tout $x \in \mathbb{R}$,

nous avons en particulier, en prenant x = 0 et $x = \frac{\pi}{2}$:

$$\begin{cases} \alpha_1 \cos(0) + \alpha_2 \sin(0) = 0 \\ \alpha_1 \cos\left(\frac{\pi}{2}\right) + \alpha_2 \sin\left(\frac{\pi}{2}\right) = 0 \end{cases} \implies \begin{cases} \alpha_1 = 0, \\ \alpha_2 = 0. \end{cases}$$

Par contre, les fonctions

$$g_1(x) = \cos^2(x),$$
 $g_2(x) = \sin^2(x)$ et $g_3(x) = \cos(2x)$

sont linéairement dépendantes car nous savons que

$$\cos(2x) = \cos^2(x) - \sin^2(x) \iff \mathbf{1}g_1(x) + (-1)g_2(x) + (-1)g_3(x) = 0, \quad \text{pour tout } x \in \mathbb{R}.$$

5. Soit $V = F(\mathbb{R}, \mathbb{R})$. Les fonctions

$$f_1(x) = \cos(x),$$
 $f_2(x) = \cos(3x)$ et $f_3(x) = \cos^3(x)$

sont linéairement dépendantes. En effet, nous savons que

$$\cos(3x) = 4\cos^3(x) - 3\cos(x) \iff 3f_1(x) + 1f_2(x) + (-4)f_3(x) = 0, \quad \text{pour tout } x \in \mathbb{R}.$$

Alternativement, nous pouvons résoudre

$$\alpha_1 \cos(x) + \alpha_2 \cos(3x) + \alpha_3 \cos^3(x) = 0$$
 pour tout $x \in \mathbb{R}$.

En prenant x=0, $x=\frac{\pi}{6}$ et $x=\frac{\pi}{3}$ nous obtenons le système homogène

$$\begin{cases} \alpha_{1}\cos(0) + \alpha_{2}\cos(0) + \alpha_{3}\cos^{3}(0) = 0 \\ \alpha_{1}\cos\left(\frac{\pi}{6}\right) + \alpha_{2}\cos\left(\frac{\pi}{6}\right) + \alpha_{3}\cos^{3}\left(\frac{\pi}{6}\right) = 0 \\ \alpha_{1}\cos\left(\frac{\pi}{3}\right) + \alpha_{2}\cos(\pi) + \alpha_{3}\cos^{3}\left(\frac{\pi}{3}\right) = 0 \end{cases} \iff \begin{cases} \alpha_{1} + \alpha_{2} + \alpha_{3} = 0 \\ 4\alpha_{1} + 3\alpha_{3} = 0 \\ 4\alpha_{1} + 3\alpha_{2} + \alpha_{3} = 0 \end{cases}$$

Comme la solution de ce système est

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = t \begin{bmatrix} -3 \\ -1 \\ 4 \end{bmatrix}, \quad \text{avec } t \in \mathbb{R},$$

nous retrouvons la relation de dépendance linéaire

$$3f_1(x) + 1f_2(x) + (-4)f_3(x) = 0$$
, pour tout $x \in \mathbb{R}$.

Théorème. (Caractérisation des ensembles linéairement dépendants)

Soit V un espace vectoriel. Soient $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ des vecteurs de V (avec $k \geqslant 2$).

L'ensemble $S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_k\}$ est linéairement dépendant si et seulement si, au moins un des vecteurs de S peut s'écrire comme combinaison linéaire des autres.

Preuve. Analogue au cas $V = \mathbb{R}^n$ traité au chapitre 1.

Corollaire. Si l'ensemble de vecteurs $\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_n\}$ est linéairement dépendant alors l'ensemble $\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_n,\vec{v}\}$ est linéairement dépendant pour n'importe quel choix de $\vec{v} \in V$. Preuve. Si $\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_n\}$ est linéairement dépendant, alors au moins un des vecteurs est combinaison linéaire des autres. Supposons que $\vec{v}_1 = \beta_2 \vec{v}_2 + \beta_3 \vec{v}_3 + \ldots + \beta_n \vec{v}_n$. Nous avons donc $\vec{v}_1 = \beta_2 \vec{v}_2 + \beta_3 \vec{v}_3 + \ldots + \beta_n \vec{v}_n + 0 \vec{v}$.

Par conséquent, l'ensemble $\{\vec{v}_1,\vec{v}_2,\dots,\vec{v}_n,\vec{v}\}$ est linéairement dépendant.

Corollaire. Si $\mathcal{S} = \{\vec{v}_1, \dots, \vec{v}_n\}$ est un ensemble de vecteurs linéairement indépendants alors tout sous-ensemble \mathcal{T} de \mathcal{S} est formé de vecteurs linéairement indépendants.

Preuve. Supposons qu'un sous-ensemble \mathcal{T} de \mathcal{S} est formé de vecteurs linéairement dépendants. Le corollaire précédent entraîne que l'ensemble \mathcal{S} est aussi formé de vecteurs linéairement dépendants, ce qui est en contradiction avec l'hypothèse.

Sous-espaces vectoriels

Définition. Soit V un espace vectoriel et soit $W \subset V$ un sous-ensemble non-vide de V.

On dit que *W* est un *sous-espace vectoriel de V* si *W* est lui-même un espace vectoriel avec les mêmes opérations d'addition et multiplication par un scalaire.

Proposition. Soit V un espace vectoriel et soit $W \subset V$ un sous-ensemble de V.

Alors W est un sous-espace vectoriel de V si et seulement si les conditions suivantes sont satisfaites :

- 0. Le vecteur zéro $\vec{0}$ de V est contenu dans W.
- **1.** Si \vec{w}_1 , $\vec{w}_2 \in W$ alors $\vec{w}_1 + \vec{w}_2 \in W$
- 2. Si $\vec{w} \in W$ et $\lambda \in \mathbb{R}$ alors $\lambda \vec{w} \in W$

En d'autres termes, $W \subset V$ est un sous-espace vectoriel de V si toute combinaison linéaire d'éléments de W est un élément de W.

Preuve. Les conditions 0, 1 et 2 correspondent aux axiomes 4, 1 et 6 respectivement.

En prenant $\lambda = -1$, la condition 2 nous donne l'axiome 5 :

si
$$\vec{w} \in W$$
 alors $-\vec{w} = (-1)\vec{w} \in W$.

Les autres axiomes restent valables sur W car ils le sont dans V.

Remarques.

- Si V est un espace vectoriel, alors V est le plus grand sous-espace vectoriel de V et l'ensemble $\{\vec{0}\} \subset V$ est le plus petit sous-espace vectoriel de V. En effet, nous avons $\vec{0} \in \{\vec{0}\}$, $\vec{0} + \vec{0} = \vec{0}$ et $\lambda \vec{0} = \vec{0}$ pour tout $\lambda \in \mathbb{R}$.
- Pour montrer qu'un ensemble non-vide est un espace vectoriel, il suffit de montrer qu'il est un sous-espace vectoriel d'un espace vectoriel connu, ce qui est plus simple à faire.

Exemples

1. L'ensemble $W = \{(x, y) \in \mathbb{R}^2 : x + y = 0\}$ est un sous-espace vectoriel de \mathbb{R}^2 . En effet, le vecteur (0,0) est dans W et comme les éléments de W sont de la forme (x,-x), avec $x \in \mathbb{R}$, nous avons :

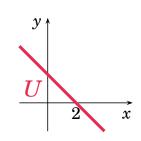
$$\begin{bmatrix} x_1 \\ -x_1 \end{bmatrix} + \begin{bmatrix} x_2 \\ -x_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ -(x_1 + x_2) \end{bmatrix} \in W,$$

$$\lambda \begin{bmatrix} x \\ -x \end{bmatrix} = \begin{bmatrix} \lambda x \\ -\lambda x \end{bmatrix} \in W.$$

W x

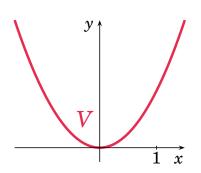
 $W \subset \mathbb{R}^2$ est la droite de pente -1 qui passe par l'origine.

2. L'ensemble $U = \{(x, y) \in \mathbb{R}^2 : x + y = 2\}$ *n'est pas* un sous-espace vectoriel de \mathbb{R}^2 . En effet, il suffit de constater que $(0,0) \not\in U$. $U \subset \mathbb{R}^2$ est la droite de pente -1 qui passe par (0,2).



3. L'ensemble $V = \{(x,y) \in \mathbb{R}^2 : y = x^2\}$ n'est pas un sous-espace vectoriel de \mathbb{R}^2 même si $(0,0) \in V$. En effet, les éléments de V sont de la forme (x,x^2) , avec $x \in \mathbb{R}$, d'où

$$\begin{bmatrix} x_1 \\ x_1^2 \end{bmatrix} + \begin{bmatrix} x_2 \\ x_2^2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ x_1^2 + x_2^2 \end{bmatrix} \neq \begin{bmatrix} x_1 + x_2 \\ (x_1 + x_2)^2 \end{bmatrix}$$
en général
$$\lambda \begin{bmatrix} x \\ x^2 \end{bmatrix} = \begin{bmatrix} \lambda x \\ \lambda x^2 \end{bmatrix} \neq \begin{bmatrix} \lambda x \\ (\lambda x)^2 \end{bmatrix}$$
en général



- **4.** L'ensemble $C(\mathbb{R},\mathbb{R})$ des fonctions continues est un sous-espace vectoriel de $F(\mathbb{R},\mathbb{R})$ car la somme de deux fonctions continues est continue et le produit d'une fonction continue par un scalaire reste continue.
- **5.** L'ensemble \mathbb{P}_n est un sous-espace vectoriel de $F(\mathbb{R},\mathbb{R})$ pour tout $n=0,1,2,\ldots$
- **6.** L'ensemble \mathbb{P}_k est un sous-espace vectoriel de \mathbb{P}_n pour tout $k=0,1,2,\ldots,n$