2. Calcul matriciel

2.1. Opérations matricielles

Définition. Une *matrice* de taille $m \times n$ est un tableau rectangulaire de mn nombres réels disposés sur m lignes et n colonnes. Les éléments de la matrice sont appelés *coefficients* (ou *éléments*) de la matrice.

Nous utilisons des lettres majuscules pour noter les matrices :

$$A, B, \dots$$

et des lettres minuscules pour les coefficients :

 a_{jk} est le coefficient de la matrice A situé à la j-ème ligne et la k-ème colonne. Une matrice de taille $m \times n$ a la forme générale suivante :

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}$$
 m lignes
$$n \text{ colonnes}$$

Notation: L'ensemble des matrices de taille $m \times n$ à coefficients dans \mathbb{R} est noté $M_{m,n}(\mathbb{R})$. De plus, nous utilisons parfois la notation

$$A = [a_{jk}]$$

plutôt que

$$A = \left[\begin{array}{cccccc} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{array} \right].$$

Nous utilisons aussi la notation

$$A = \left[\vec{a}_1 \quad \vec{a}_2 \quad \cdots \quad \vec{a}_n \right]$$

où

$$\vec{a}_1 = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, \ \vec{a}_2 = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \dots, \ \vec{a}_n = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix},$$

sont les n colonnes de la matrice A.

Cas particuliers

• Matrice nulle, notée $O \in M_{m,n}(\mathbb{R})$, telle que tous ses coefficients sont nuls :

$$O = \left[\begin{array}{ccccc} 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{array} \right].$$

- *Matrice carrée*, si la matrice a le même nombre de lignes et de colonnes : m = n.
- Matrice diagonale : matrice carrée telle que $a_{jk} = 0$ si $j \neq k$:

$$\begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ 0 & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix}.$$

• Matrice identité ou matrice unité, notée $I_n \in M_{n,n}(\mathbb{R})$: matrice diagonale telle que $a_{jj} = 1$ pour tout j = 1, 2, ..., n:

$$I_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}.$$

• *Matrice triangulaire supérieure* : matrice carrée telle que tous les coefficients au-dessous de la diagonale principale sont nuls :

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

• *Matrice triangulaire inférieure* : matrice carrée telle que tous les coefficients au-dessus de la diagonale principale sont nuls :

$$\mathbf{A} = \begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ a_{31} & a_{32} & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix}$$

Opérations

Somme de matrices:

Soient $A = [a_{jk}]$ et $B = [b_{jk}]$ deux matrices de taille $m \times n$. La somme des matrices A et B, notée A + B, est la matrice de taille $m \times n$ donnée par :

$$A+B=\left[\begin{array}{ccc}a_{11}&\cdots&a_{1n}\\ \vdots&\ddots&\vdots\\ a_{m1}&\cdots&a_{mn}\end{array}\right]+\left[\begin{array}{ccc}b_{11}&\cdots&b_{1n}\\ \vdots&\ddots&\vdots\\ b_{m1}&\cdots&b_{mn}\end{array}\right]=\left[\begin{array}{ccc}a_{11}+b_{11}&\cdots&a_{1n}+b_{1n}\\ \vdots&\ddots&\vdots\\ a_{m1}+b_{m1}&\cdots&a_{mn}+b_{mn}\end{array}\right].$$

Attention: La somme de matrices n'est pas définie si les matrices n'ont pas la même taille.

Exemple

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} + \begin{bmatrix} 5 & -2 \\ 4 & 0 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} 1+5 & 2-2 \\ 3+4 & 4+0 \\ 5-3 & 6+2 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 7 & 4 \\ 2 & 8 \end{bmatrix}$$

Produit d'une matrice par un scalaire ¹:

Soit $A = \begin{bmatrix} a_{jk} \end{bmatrix}$ une matrice de taille $m \times n$ et soit $\lambda \in \mathbb{R}$. Le produit de la matrice A par le scalaire $\lambda \in \mathbb{R}$ est la matrice de taille $m \times n$, notée λA , donnée par

$$\lambda A = \lambda \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} \lambda a_{11} & \cdots & \lambda a_{1n} \\ \vdots & \ddots & \vdots \\ \lambda a_{m1} & \cdots & \lambda a_{mn} \end{bmatrix}$$

Exemple

$$\begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix} = \begin{bmatrix}
5 \cdot 1 & 5 \cdot 2 \\
5 \cdot 3 & 5 \cdot 4 \\
5 \cdot 5 & 5 \cdot 6
\end{bmatrix} = \begin{bmatrix}
5 & 10 \\
15 & 20 \\
25 & 30
\end{bmatrix}$$

^{1.} Pour les physiciens, un scalaire est une quantité physique qui ne comporte qu'une grandeur. Pour les mathématiciens, un scalaire est un nombre.

Théorème. Soient A, B et C des matrices de même taille et $\lambda, \mu \in \mathbb{R}$ des scalaires.

 $\mathbf{a)} \quad A+B=B+A$

(commutativité de l'addition)

b) A + (B + C) = (A + B) + C

(associativité de l'addition)

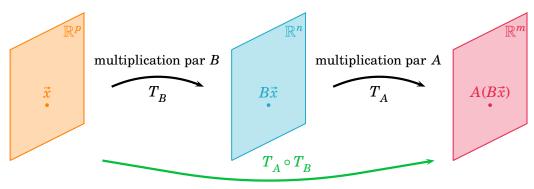
 \mathbf{c}) A+O=A

(élément neutre pour l'addition)

- **d)** $\lambda(A+B) = \lambda A + \lambda B$
- e) $(\lambda + \mu)A = \lambda A + \mu A$
- **f**) $\lambda(\mu A) = (\lambda \mu)A$

Multiplication matricielle:

Soit A une matrice de taille $m \times n$ et soit $T_A : \mathbb{R}^n \to \mathbb{R}^m$ l'application linéaire associée. Soit B une matrice de taille $n \times p$ et soit $T_B : \mathbb{R}^p \to \mathbb{R}^n$ l'application linéaire associée.



multiplication par AB

Par construction, l'image d'un vecteur $\vec{x} \in \mathbb{R}^p$ par la composition $T_A \circ T_B \colon \mathbb{R}^p \to \mathbb{R}^m$ est $(T_A \circ T_B)(\vec{x}) = T_A \big(T_B(\vec{x}) \big) = T_A \big(B\vec{x} \big) = A(B\vec{x}) \, .$

La matrice de taille $m \times p$ canoniquement associée à la composition $T_A \circ T_B : \mathbb{R}^p \to \mathbb{R}^m$ est apelée matrice produit de A et B, notée AB. Nous avons donc

$$(AB)\vec{x} = A(B\vec{x}),$$
 pour tout $\vec{x} \in \mathbb{R}^p$.

Comme

$$B = \begin{bmatrix} b_1 & \vec{b}_2 & \cdots & \vec{b}_p \end{bmatrix} \quad \text{et} \quad B\vec{x} = x_1\vec{b}_1 + x_2\vec{b}_2 + \dots + x_p\vec{b}_p,$$

nous avons

$$\begin{split} (AB)\vec{x} &= A(B\vec{x}) \\ &= A\left(x_1\vec{b}_1 + x_2\vec{b}_2 + \ldots + x_p\vec{b}_p\right) \\ &= x_1(A\vec{b}_1) + x_2(A\vec{b}_2) + \ldots + x_p(A\vec{b}_p) \\ &= \left[A\vec{b}_1 \quad A\vec{b}_2 \quad \cdots \quad A\vec{b}_p \ \middle| \vec{x}, \qquad \text{pour tout } \vec{x} \in \mathbb{R}^p. \end{split}$$

Par conséquent,

$$AB = \begin{bmatrix} A\vec{b}_1 & A\vec{b}_2 & \cdots & A\vec{b}_p \end{bmatrix}.$$

Autrement dit,

$$A \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \cdots & \vec{b}_p \end{bmatrix} = \begin{bmatrix} A\vec{b}_1 & A\vec{b}_2 & \cdots & A\vec{b}_p \end{bmatrix}.$$

Exemple

$$\text{Considérons } A = \left[\begin{array}{ccc} 2 & 3 & -4 \\ 1 & 0 & 5 \end{array} \right] \ \text{ et } \ B = \left[\begin{array}{ccc} \vec{b}_1 & \vec{b}_2 \end{array} \right] = \left[\begin{array}{ccc} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{array} \right].$$

Nous avons

$$A\vec{b}_1 = \begin{bmatrix} 2 & 3 & -4 \\ 1 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 3 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} -4 \\ 5 \end{bmatrix} = \begin{bmatrix} -4 \\ 16 \end{bmatrix}$$

$$A\vec{b}_2 = \begin{bmatrix} 2 & 3 & -4 \\ 1 & 0 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = 4 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} 3 \\ 0 \end{bmatrix} + 6 \begin{bmatrix} -4 \\ 5 \end{bmatrix} = \begin{bmatrix} -1 \\ 34 \end{bmatrix}$$

ďoù

$$AB = \begin{bmatrix} A\vec{b}_1 & A\vec{b}_2 \end{bmatrix} = \begin{bmatrix} -4 & -1 \\ 16 & 34 \end{bmatrix}$$

Règle «ligne-colonne » du produit matriciel :

Soient

$$\begin{split} A &= \left[\, a_{jk} \, \right] \in M_{m,n}(\mathbb{R}), & \text{avec } 1 \leqslant j \leqslant m \; \text{ et } \; 1 \leqslant k \leqslant n, \\ B &= \left[\, b_{k\ell} \, \right] \in M_{n,p}(\mathbb{R}), & \text{avec } 1 \leqslant k \leqslant n \; \text{ et } \; 1 \leqslant \ell \leqslant p. \end{split}$$

Le produit des matrices A et B, noté AB, est la matrice de taille $m \times p$ dont les coefficients sont donnés par :

$$c_{j\ell} = a_{j1}b_{1\ell} + a_{j2}b_{2\ell} + a_{j3}b_{3\ell} + \dots + a_{jn}b_{n\ell} = \sum_{k=1}^{n} a_{jk}b_{k\ell}$$

Ainsi, le coefficient $c_{j\ell}$ est égal au produit scalaire de la j-ème ligne de A avec la ℓ -ème colonne de B :

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} & \cdots & b_{1p} \\ b_{21} & b_{22} & b_{23} & \cdots & b_{2p} \\ b_{31} & b_{32} & b_{33} & \cdots & b_{3p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & b_{n3} & \cdots & b_{np} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & \cdots & c_{1p} \\ c_{21} & c_{22} & c_{23} & \cdots & c_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & c_{m3} & \cdots & c_{mp} \end{bmatrix}.$$

Attention: le produit de A et B n'est pas défini si le nombre de colonnes de A n'est pas égal au nombre de lignes de B.

Exemple

Si
$$A = \begin{bmatrix} 2 & 3 & -4 \\ 1 & 0 & 5 \end{bmatrix}$$
 et $B = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$, alors
$$AB = \begin{bmatrix} 2 & 3 & -4 \\ 1 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} 2 \cdot 1 + 3 \cdot 2 + (-4) \cdot 3 & 2 \cdot 4 + 3 \cdot 5 + (-4) \cdot 6 \\ 1 \cdot 1 + 0 \cdot 2 + 5 \cdot 3 & 1 \cdot 4 + 0 \cdot 5 + 5 \cdot 6 \end{bmatrix} = \begin{bmatrix} -4 & -1 \\ 16 & 34 \end{bmatrix}$$

$$BA = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} 2 & 3 & -4 \\ 1 & 0 & 5 \end{bmatrix} = \begin{bmatrix} 1 \cdot 2 + 4 \cdot 1 & 1 \cdot 3 + 4 \cdot 0 & 1 \cdot (-4) + 4 \cdot 5 \\ 2 \cdot 2 + 5 \cdot 1 & 2 \cdot 3 + 5 \cdot 0 & 2 \cdot (-4) + 5 \cdot 5 \\ 3 \cdot 2 + 6 \cdot 1 & 3 \cdot 3 + 6 \cdot 0 & 3 \cdot (-4) + 6 \cdot 5 \end{bmatrix} = \begin{bmatrix} 6 & 3 & 16 \\ 9 & 6 & 17 \\ 12 & 9 & 18 \end{bmatrix}$$

Remarque. Il est toujours possible de multiplier des matrices carrées de même taille.

Attention: Même si les produits AB et BA sont définis, en général nous avons

$$AB \neq BA$$
.

Par exemple, si

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 et $B = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$,

alors nous avons

$$AB = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 et $BA = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \neq AB$

De plus, nous remarquons qu'il est possible d'avoir un produit de deux matrices non nulles qui est égal à la matrice nulle :

$$AB = O$$
 avec $A \neq O$ et $B \neq O$.

Puissance d'une matrice :

Les puissances entières non négatives d'une matrice carrée A sont définies comme suit :

A⁰ = I,
$$A^1 = A$$
, $A^2 = AA$, $A^k = \underbrace{AA \cdots A}_{k \text{ fois}}$

Théorème. Soit A une matrice de taille $m \times n$, et B et C deux matrices telles que les sommes et les produits ci-dessous aient un sens.

- a) A(BC) = (AB)C (associativité du produit)
- **b)** A(B+C) = AB + AC (distributivité à gauche)
- c) (B+C)A = BA + CA (distributivité à droite)
- d) $\lambda(AB) = (\lambda A)B = A(\lambda B)$ pour tout $\lambda \in \mathbb{R}$
- e) $I_m A = A = AI_n$ (élément neutre pout la multiplication)

Preuve.

a) Soient B une matrice de taille $n \times p$ et C une matrice de taille $p \times q$. Par définition,

$$BC = B \begin{bmatrix} \vec{c}_1 & \vec{c}_2 & \cdots & \vec{c}_q \end{bmatrix} = \begin{bmatrix} B\vec{c}_1 & B\vec{c}_2 & \cdots & B\vec{c}_q \end{bmatrix}$$

ďoù

$$\begin{split} A(BC) &= A \left[\begin{array}{cccc} B\vec{c}_1 & B\vec{c}_2 & \cdots & B\vec{c}_q \end{array} \right] = \left[\begin{array}{cccc} A(B\vec{c}_1) & A(B\vec{c}_2) & \cdots & A(B\vec{c}_q) \end{array} \right] \\ &= \left[\begin{array}{cccc} (AB)\vec{c}_1 & (AB)\vec{c}_2 & \cdots & (AB)\vec{c}_q \end{array} \right] = (AB) \left[\begin{array}{cccc} \vec{c}_1 & \vec{c}_2 & \cdots & \vec{c}_q \end{array} \right] \\ &= (AB)C \end{split}$$

b) $-\mathbf{e}$) À faire (voir exercice 9 de la série 5).

Transposée d'une matrice

Définition. Soit A une matrice de taille $m \times n$. On définit la matrice transposée de A, notée A^T comme la matrice de taille $n \times m$ dont les colonnes sont les lignes de A.

Exemple

Si
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
 alors $A^T = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$

Théorème. Soient A et B deux matrices telles que les sommes et les produits ci-dessous aient un sens.

- $(A^T)^T = A$
- **b)** $(A+B)^T = A^T + B^T$
- c) $(\lambda A)^T = \lambda A^T$ pour tout $\lambda \in \mathbb{R}$
- $\mathbf{d)} \quad (AB)^T = B^T A^T$

Preuve.

- (a) (c) Conséquence directe de la définition.
- d) À faire (voir exercice 9 de la série 5).

Définition. Soit A une matrice carrée de taille $n \times n$.

On dit que A est symétrique si $A^T = A$.

On dit que A est antisymétrique si $A^T = -A$.

Exemple

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$
 est symétrique et $A = \begin{bmatrix} 0 & -4 \\ 4 & 0 \end{bmatrix}$ est antisymétrique.

2.2. Matrices inversibles

Définition. Une matrice carrée $A = \left[a_{jk}\right] \in M_{n,n}(\mathbb{R})$ est *inversible* s'il existe une matrice carrée $B = \left[b_{jk}\right] \in M_{n,n}(\mathbb{R})$ telle que

$$AB = I_n$$
 et $BA = I_n$

où

$$I_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

est la matrice identité de $M_{n,n}(\mathbb{R}).$

Remarque. Si A est une matrice inversible, alors la matrice B de la définition est unique. En effet, si B et C sont deux matrices telles que $AB = I_n = BA$ et $AC = I_n = CA$ alors

$$\left. \begin{array}{c} C(AB) = CI_n = C \\ (CA)B = I_nB = B \end{array} \right\} \quad \Longrightarrow \quad B = C$$

Définition. L'unique matrice de taille $n \times n$, notée A^{-1} , telle que

$$AA^{-1} = I_n$$
 et $A^{-1}A = I_n$

est appelée matrice inverse de A.

Proposition. Si $A \in M_{n,n}(\mathbb{R})$ est inversible alors $A^{-1} \in M_{n,n}(\mathbb{R})$ est aussi inversible et $(A^{-1})^{-1} = A$.

Preuve. Par définition, $AA^{-1} = I_n$ et $A^{-1}A = I_n$ et de ce fait, A est l'inverse de A^{-1} .

Proposition. Si $A, B \in M_{n,n}(\mathbb{R})$ sont deux matrices inversibles, alors

$$AB \in M_{n,n}(\mathbb{R})$$
 est inversible et $(AB)^{-1} = B^{-1}A^{-1}$.

Preuve. Nous avons

$$AB(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AI_nA^{-1} = AA^{-1} = I_n$$

$$(B^{-1}A^{-1})AB = B^{-1}(A^{-1}A)B = B^{-1}I_nB = B^{-1}B = I_n$$

Proposition. Si $A \in M_{n,n}(\mathbb{R})$ est une matrice inversible et $\lambda \in \mathbb{R}$ est tel que $\lambda \neq 0$, alors

$$\lambda A \in M_{n,n}(\mathbb{R})$$
 est inversible et $(\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$.

Preuve. Nous avons

$$\lambda A \left(\frac{1}{\lambda} A^{-1}\right) = \lambda \frac{1}{\lambda} (A A^{-1}) = I_n$$

$$\left(\frac{1}{\lambda} A^{-1}\right) \lambda A = \lambda \frac{1}{\lambda} (A^{-1} A) = I_n$$

Question. Comment déterminer si A est inversible?

Exemple

Déterminer si $A = \begin{bmatrix} 1 & 4 \\ -1 & -3 \end{bmatrix}$ est inversible. Si oui, calculer A^{-1} .

Nous cherchons une matrice $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ telle que $AA^{-1} = I_2$ et $A^{-1}A = I_2$.

Nous avons

$$AA^{-1} = I_2 \iff \begin{bmatrix} 1 & 4 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \iff \begin{bmatrix} a+4c & b+4d \\ -a-3c & -b-3d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$

Nous devons résoudre deux systèmes :

$$\begin{cases} a+4c=1\\ -a-3c=0 \end{cases} \text{ et } \begin{cases} b+4d=0\\ -b-3d=1 \end{cases}$$

La réduction des matrices augmentées associées aux deux systèmes nous donne :

$$\begin{bmatrix} 1 & 4 & 1 \\ -1 & -3 & 0 \end{bmatrix} \underbrace{L_2 - L_2 + L_1} \begin{bmatrix} 1 & 4 & 1 \\ 0 & 1 & 1 \end{bmatrix} \underbrace{L_1 - L_1 - 4L_2} \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 1 \end{bmatrix} \implies \begin{cases} a = -3 \\ c = 1 \end{cases}$$

$$\begin{bmatrix} 1 & 4 & 0 \\ -1 & -3 & 1 \end{bmatrix} \underbrace{L_2 - L_2 + L_1} \begin{bmatrix} 1 & 4 & 0 \\ 0 & 1 & 1 \end{bmatrix} \underbrace{L_1 - L_1 - 4L_2} \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 1 \end{bmatrix} \implies \begin{cases} b = -4 \\ d = 1 \end{cases}$$

Par conséquent, la matrice A est inversible et nous avons

$$A^{-1} = \left[\begin{array}{rr} -3 & -4 \\ 1 & 1 \end{array} \right].$$

Vérification:

$$AA^{-1} = \begin{bmatrix} 1 & 4 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} -3 & -4 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -3+4 & -4+4 \\ 3-3 & 4-3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$A^{-1}A = \begin{bmatrix} -3 & -4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ -1 & -3 \end{bmatrix} = \begin{bmatrix} -3+4 & -12+12 \\ 1-1 & 4-3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Idée: Résoudre les deux systèmes en même temps:

$$\left[\begin{array}{c|c|c|c|c} 1 & 4 & 1 & 0 \\ -1 & -3 & 0 & 1 \end{array}\right] \underbrace{L_2 \to L_2 + L_1}_{L_2} \left[\begin{array}{c|c|c|c} 1 & 4 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{array}\right] \underbrace{L_1 \to L_1 - 4L_2}_{L_1 \to L_1 - 4L_2} \left[\begin{array}{c|c|c} 1 & 0 & -3 & -4 \\ 0 & 1 & 1 & 1 \end{array}\right]$$

Constat: La réduction de Gauss-Jordan de la matrice $\left[A\,\big|\,I_2\right]$ nous donne dans ce cas la matrice $\left[\,I_2\,\big|\,A^{-1}\,\right].$

Nous verrons plus tard que lorsque A est une matrice inversible de taille $n \times n$ quelconque, la matrice inverse A^{-1} peut être calculée exactement de la même manière :

$$[A | I_n] \longrightarrow [I_n | A^{-1}]$$

Cas particulier

Si $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, alors nous distinguons deux cas :

• Si $ad - bc \neq 0$, alors la matrice A est inversible et nous avons une formule explicite pour calculer l'inverse :

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

• Si ad - bc = 0, alors la matrice A n'est pas inversible.

Le nombre ad-bc « détermine » donc si la matrice A est inversible ou pas! Ce nombre est appelé le *déterminant* de la matrice A, noté det(A).

Nous verrons au Chapitre 3 comment définir le déterminant pour des matrices carrées de taille $n \times n$ avec $n \ge 3$.

Matrices élémentaires.

Rappel.

Nous avons vu qu'il y a trois types d'opérations étémentaires (sur les lignes d'une matrice):

· Type I: échanger deux lignes:

· Type II: multiplier une ligne par un nombre non-nul;

$$L_j \rightarrow \lambda L_j$$
, avec $\lambda \neq 0$

· Type III: additionner un multiple d'une ligne à une antre:

Déginition.

Une matrice carrée de taille nxn est une matrice élémentaire si elle peut être obtenue à partir de la matrice identité In à l'aide d'une seule opération élémentaire sur les lignes.

Par conséquent, il y a trois types de matrice élémentaire.

Illustration (n=2)

• Type
$$\Gamma$$
: $E_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ car $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\underbrace{L_1 \leftrightarrow L_2}_{1 \leftarrow 0} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

• Type II:
$$E_2 = \begin{bmatrix} 1 & 0 \\ 0 & 7 \end{bmatrix}$$
 car $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\underbrace{I_2 + I_2}_{L_2} \begin{bmatrix} 1 & 0 \\ 0 & 7 \end{bmatrix}$

• Type
$$\overline{\mathbb{II}}$$
: $E_3 = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}$ car $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\underbrace{I_1 - I_1 - 3}_{I_1 - I_1 - 3} \underbrace{I_2 - I_1 - 3}_{I_1 - 3} \underbrace{I$

Propriété.

Soit A une matrice de taille mxn quelconque.

Soit E une matrice élémentaire de taille mxm.

Le produit EA est la matrice obtenue à partir de A à l'aide de l'opération élémentaire sur les lignes associéé à le matrice E:

Vérification.

Prenons $A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$, $E_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $E_2 = \begin{bmatrix} 1 & 0 \\ 0 & 7 \end{bmatrix}$ et $E_3 = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}$. On a:

• Type
$$\Gamma$$
: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \xrightarrow{L_1 \leftrightarrow L_2} E_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \xrightarrow{L_1 \leftrightarrow L_2} \begin{bmatrix} d & e & f \\ c & b & c \end{bmatrix}$

$$E_1 A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} = \begin{bmatrix} d & e & f \\ c & b & c \end{bmatrix}$$

• Type II:
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $\underset{L_2 \to 7L_2}{\widetilde{L}_2} = \begin{bmatrix} 1 & 0 \\ 0 & 7 \end{bmatrix}$, $A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$ $\underset{L_2 \to 7L_2}{\widetilde{L}_2} = \begin{bmatrix} a & b & c \\ 1 & 7 & 7e & 7f \end{bmatrix}$

$$E_2 A = \begin{bmatrix} 1 & 0 \\ 0 & 7 \end{bmatrix} \begin{bmatrix} a & b & c \\ 3 & e & f \end{bmatrix} = \begin{bmatrix} a & b & c \\ 7d & 7e & 7f \end{bmatrix}$$

• Type
$$\overline{\text{III}}$$
: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\underbrace{I_1 = I_1 - 3I_2}_{I_1 = I_1 - 3I_2} E_3 = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}$

$$A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \underbrace{I_1 = I_1 - 3I_2}_{I_1 = I_1 - 3I_2} \begin{bmatrix} a - 3d & b - 3e & c - 3f \\ d & e & f \end{bmatrix}$$

$$E_3 A = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} = \begin{bmatrix} a - 3d & b - 3e & c - 3f \\ d & e & f \end{bmatrix}$$

Proposition

Si E est une matrice élémentaire, clors E est inversible.

De plus, E-1 est aussi une matrice élémentaire de même type que É. Preuve.

Il suffit de remarquer que les opérations élémentaires sur les lignes sont réversibles:

Type
$$T:$$

$$\begin{array}{cccc}
\Gamma_{j} & \Gamma_{k} & \Gamma_{k} & \Gamma_{k} \\
\Gamma_{j} & \Gamma_{k} & \Gamma_{k} & \Gamma_{k} & \Gamma_{k} \\
\Gamma_{j} & \Gamma_{k} & \Gamma_{k} & \Gamma_{k} & \Gamma_{k} \\
\Gamma_{k} & \Gamma_{k} & \Gamma_{k} & \Gamma_{k} & \Gamma_{k} & \Gamma_{k} \\
\Gamma_{k} & \Gamma_{k} & \Gamma_{k} & \Gamma_{k} & \Gamma_{k} & \Gamma_{k} \\
\Gamma_{k} & \Gamma_{k} & \Gamma_{k} & \Gamma_{k} & \Gamma_{k} & \Gamma_{k} & \Gamma_{k} \\
\Gamma_{k} & \Gamma_{k} & \Gamma_{k} & \Gamma_{k} & \Gamma_{k} & \Gamma_{k} & \Gamma_{k} \\
\Gamma_{k} & \Gamma_{k} \\
\Gamma_{k} & \Gamma_{k} \\
\Gamma_{k} & \Gamma_{k} \\
\Gamma_{k} & \Gamma_{k} \\
\Gamma_{k} & \Gamma_{k} \\
\Gamma_{k} & \Gamma_{k} &$$

Si l'en note F la matrice élémentaire essociéé à la denxième opération élémentaire en a bien FE=I, d'en $F=E^{-1}$.

Théorème.

Soit A une matrice de taille mxn. Soit R la matrice échelonnée-réduite de faille mxn associéé à A. Alors il existe des matrices élémentaires $E_1, E_2, ..., E_k$ de taille mxn telles que

$$E_k \cdot \cdot \cdot E_2 E_1 A = T$$

Preuve.

Comme $A \sim R$, il y a un nombre fini d'opérations élémentaires sur les lignes que transforment A en R. Chacune de ces opérations élémentaires est associée à une matrice élémentaire. On $a: A \sim E_1 A \sim E_2(E_1 A) = (E_2 E_1) A$ $\sim E_3(E_2 E_1) A = (E_3 E_2 E_1) A \sim \cdots$ $\sim E_4(E_{k-1} \cdots E_3 E_2 E_1) A = (E_4 \cdots E_3 E_2 E_1) A = R$

Exemple.

Soit
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 4 \end{bmatrix}$$

On a

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 4 \end{bmatrix} \underbrace{\sum_{l_2 \to l_2} - 2l_1} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix} = E_1 A \text{ et } \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \underbrace{\sum_{l_2 \to l_2} - 2l_1} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} = E_1$$

$$\underbrace{\sum_{l_2 \to l_2} - 2l_1} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix} = E_2 E_1 A \text{ et } \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \underbrace{\sum_{l_2 \to l_2} - 2l_1} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = E_2$$

$$\underbrace{\sum_{l_1 \to l_1} - 1l_2} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = E_3 E_2 E_1 A \text{ et } \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \underbrace{\sum_{l_1 \to l_1} - 1l_2} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = E_3$$

Ainsi, R= E3EzE1A.

Théorème.

Si A est une matrice inversible de taille $n \times n$, alors l'équation $A\vec{x} = \vec{b}$ est consistante pour tout choix de $\vec{t} \in \mathbb{R}^n$. De plus, le vecteur $\vec{u} = A^{-1}\vec{b}$ est l'unique solution de $A\vec{x} = \vec{b}$.

Prenve.

Comme $A\vec{u}=A(A^{-1}\vec{b})=(AA^{-1})\vec{b}=I_n\vec{t}=\vec{b}$, le vecteur \vec{u} est une solution de $A\vec{x}=\vec{b}$.

Pour montrer que le solution est unique, supposons que $\vec{v} \in \mathbb{R}^n$ est une solution de $A\vec{x} = \vec{L}$. Autrement dit, on a $A\vec{v} = \vec{b}$ En multipliant cette égalité par A^{-1} on obtient $A^{-1}(A\vec{v}) = A^{-1}\vec{b}$, \vec{J} on $(A^{-1}A)\vec{v} = A^{-1}\vec{b}$ et $\vec{v} = A^{-1}\vec{b}$.

Théorème Soit A une matrice carrée de taille nxn.

Alors nous avons l'équivalence suivante:

A est inversible (A~In

De plus, toute suite d'opérations élémentaires sur les lignes qui transforme A en In, transforme In en A'.

Preuve.

- =>) Supposons que A est inversible.

 Le théorème précédent implique que la forme échelonnéeréduite associée à A possède un pivot par ligne.

 Comme À est carée, les pivots se trouvent sur la diagonale
 et nous avons donc R=In.
- Supposons que $A \sim In$. Il existe donc des matrices elémentaires E_1, E_2, \dots, E_k telles que $(E_k \cdots E_z E_l)A = In$. Comme E_1, \dots, E_k sont élémentaires, elles sont inversibles et $(E_k \cdots E_z E_l)$ est aussi inversible, d'où:

$$A = (E_k - E_z E_1)^{-1}$$

Par conséquent, A est inversible et nous trouvons:

$$A^{-1} = E_k \cdots E_z E_1.$$

Comme par construction

$$(E_{k} - E_{z}E_{1}) I_{n} = A^{-1}$$

la suite d'opérations élémentaires sur les lignes qui transforme A en In transforme In en A-1.

Méthode de calcul de A'.

Soit A une matrice carrée de taille nxn.

- 1. Ecrire le matrice augmentée [AIIn]
- 2. Réduire le matrice augmentée [AIIn]
 - Si bors de la réduction de cette matrice il y a une ligne de la forme 0 · · · · | * · · · * alors À n'est pas inversible.
 - Sinon, A est inversible et nous avons

$$[A|I_n] \sim [I_n|A^{-1}]$$

Exemples.

Calculer l'inverse des matrices suivantes:

1.
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & 0 & 2 \end{bmatrix}$$

$$\begin{cases}
A | I | = \begin{cases}
1 & 0 & 1 & | & 1 & 0 & 0 \\
2 & 1 & 3 & | & 0 & 1 & 0 \\
1 & 0 & 2 & | & 0 & 0 & 1
\end{cases}$$

$$\begin{array}{c}
L_1 \rightarrow L_1 - L_3 \\
L_2 \rightarrow L_2 - L_3
\end{array}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & 1 & | & -2 & 1 & 0 \\
0 & 0 & 1 & | & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{array}{c}
L_1 \rightarrow L_1 - L_3 \\
L_2 \rightarrow L_2 - L_3
\end{array}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & -2 & 1 & 0 \\
0 & 1 & 0 & | & -1 & 1 & -1 \\
-1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & -2 & 1 & 0 \\
0 & 1 & 0 & | & -1 & 1 & -1 \\
0 & 0 & 1 & | & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & -2 & 1 & 0 \\
0 & 1 & 0 & | & -1 & 1 & -1 \\
0 & 0 & 1 & | & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & 1 & -1 & 0 \\
0 & 0 & 1 & | & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & 1 & -1 & 0 \\
0 & 1 & 1 & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & 1 & -1 & 0 \\
0 & 1 & 1 & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & 1 & -1 & 0 \\
0 & 1 & 1 & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 1 \\
0 & 1 & 1 & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 1 \\
0 & 1 & 1 & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & | &$$

2.
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 6 & -2 & -3 \end{bmatrix}$$

$$\begin{cases}
A \mid I | = \begin{bmatrix}
1 - A & 0 & A & 0 & 0 \\
1 & 0 - A & 0 & A & 0 \\
6 - 2 - 3 & 0 & 0 & 1
\end{bmatrix}
\underbrace{L_{2} \rightarrow L_{2} - L_{1}}_{L_{3} \rightarrow L_{3} - 6L_{1}}
\begin{bmatrix}
A - A & 0 & A & 0 & 0 \\
0 & 1 - A & -1 & A & 0 \\
0 & 4 - 3 & -6 & 0 & A
\end{bmatrix}$$

$$\underbrace{L_{1} \rightarrow L_{1} + L_{3}}_{L_{3} \rightarrow L_{3} - 4L_{1}}
\begin{bmatrix}
A & 0 & 0 & -2 - 3 & 1 \\
0 & 1 & 0 & -2 - 4 & 1
\end{bmatrix}
= \begin{bmatrix}
I \mid A^{-1} \end{bmatrix}$$

$$\underbrace{L_{1} \rightarrow L_{1} + L_{3}}_{L_{2} \rightarrow L_{2} + L_{3}}
\begin{bmatrix}
A & 0 & 0 & -2 - 3 & 1 \\
0 & 1 & 0 & -2 - 4 & 1
\end{bmatrix}
= \begin{bmatrix}
I \mid A^{-1} \end{bmatrix}$$

$$\underbrace{A^{-1} = \begin{bmatrix} -2 - 3 & A \\ -3 - 3 & 4 \\ -2 - 4 & 1
\end{bmatrix}}_{A^{-1} A = \dots = I}$$

3.
$$A = \begin{bmatrix} 0 & 3 & -5 \\ 1 & 0 & 2 \\ -4 & -9 & 7 \end{bmatrix}$$

$$\begin{bmatrix} AII \end{bmatrix} = \begin{bmatrix} 0 & 3 & -5 & | & 1 & 0 & 0 \\ 1 & 0 & 2 & | & 0 & 1 & 0 \\ -4 & -9 & 7 & | & 0 & 0 & 1 \end{bmatrix} \underbrace{L_{1} \leftrightarrow L_{2}}_{L_{3} \leftrightarrow L_{2}} \begin{bmatrix} 1 & 0 & 2 & | & 0 & 1 & 0 \\ 0 & 3 & -5 & | & 1 & 0 & 0 \\ -4 & -9 & 7 & | & 0 & 0 & 1 \end{bmatrix}$$

$$\underbrace{L_{3} + L_{3} + 4L_{1}}_{L_{3} \leftrightarrow L_{3}} \begin{bmatrix} 1 & 0 & 2 & | & 0 & 1 & 0 \\ 0 & 3 & -5 & | & 1 & 0 & 0 \\ 0 & -9 & 15 & | & 0 & 4 & 1 \end{bmatrix}$$

$$\underbrace{L_{3} + L_{3} + 3L_{2}}_{L_{3} \leftrightarrow L_{3} \leftrightarrow L_{3}} \begin{bmatrix} 1 & 0 & 2 & | & 0 & 1 & 0 \\ 0 & 3 & -5 & | & 1 & 0 & 0 \\ 0 & 0 & 0 & | & 3 & 4 & 1 \end{bmatrix}$$

=> A n'est pas inversible

Caractérisation des matrices inversibles.

Théorème. (Théorème de caractérisation des matrices inversibles)

Soit $A = [\vec{a_i} \cdots \vec{a_n}]$ une matrice carrée de toille $n \times n$.

Les propriétés suivantes sont équivalentes (autrement dit, elles sont toutes vraies on toutes fausses):

- a) A est inversible.
- b) A ~ In (A est équivalente selon les lignes à In)
- c) A admet n positions pivot.
- d) l'équation Az=0 possè de comme unique solution z=0
- e) les colonnes de A sont linéairement indépendantes.
- f) L'application linéaire x Az est injective
- g) L'équation Are= 5 admet au moins une solution pour fout be Rn
- h) Vect{\vec{a},...,\vec{a}n}= \vec{R}^n (les colonnes de A engendrent \vec{R}^n)
- i) L'application linéaire x Az est surjective
- j) Il existe une matrice carrée C telle que CA=In (inverse à gauche)
- k) Il existe une matrice carrée D telle que AD=In (inverse à droite)
- e) AT est inversible

Conséquence importante.

Proposition.

Soient A et B deux matrices carrées de faille nxn.

Si AB=In, alors A et B sont inversibles et A'=B et B'=A.

Preuve.

Si AB=In, alors A possède un inverse à droite et le théorème de caractérisation des matrices inversibles implique que A est inversible et $A^{-1}=B$.

Si AB=In, alors B possède un inverse à gauche et le théorème de caractérisation des matrices inversibles implique que B est inversible et B-1=A.

Définition.

Soit A une matrice carrée de taille nxn.

On dit que A est singulière si A n'est pas inversible.

Remarque.

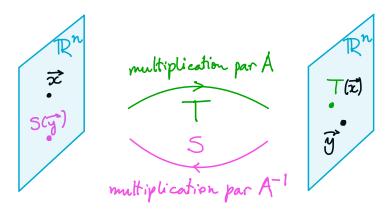
Le théorème de caractérisation des matrices inversibles partage l'ensemble de matrices carrées en deux classes disjointes:

- -les matrices inversibler (ou non singulières) et
- -les matrices singulières (ou non inversibles).

Applications lineaires inversibles.

Soit A une matrice carrée de taille nxn.

Soit $T: \mathbb{R}^n \to \mathbb{R}^n$ l'application linéaire associée à $A: T(\Xi)=A\Xi$ Si A est inversible, alors A^- existe et nous pouvons considérer l'application linéaire $S: \mathbb{R}^n \to \mathbb{R}^n$ dépinie par $S(\tilde{y})=A^{-1}\tilde{y}$. Nous avons le schéma suivant:



Comme $A^{-1}A=In$ et $AA^{-1}=In$ les compositions SoT et T-S satisfont; $(S \circ T)(\overrightarrow{x})=\overrightarrow{x}$ pour tout $\overrightarrow{x} \in \mathbb{R}^n$ $(T \circ S)(\overrightarrow{y})=\overrightarrow{y}$ pour tout $\overrightarrow{y} \in \mathbb{R}^n$

Définition.

On dit que $T: \mathbb{R}^n \to \mathbb{R}^n$ est une application lineaire inversible s'il existe une application lineaire $S: \mathbb{R}^n \to \mathbb{R}^n$ telle que $S(T(\vec{x})) = \vec{x}$ pour tout $\vec{x} \in \mathbb{R}^n$ et $T(S(\vec{y})) = \vec{y}$ pour tout $\vec{y} \in \mathbb{R}^n$

Théorème.

Soit T: R^ une application linéaire et soit A la matrice canoniquement associée à T. Nous avons l'équivalence:

Tinversible >> A inversible.

Dans ce cas, l'application linéaire $S: \mathbb{R}^n \to \mathbb{R}^n$ définie par $S(y)=A^-y$ est l'unique application linéaire qui satisfait S(T(x))=x pour tout $x\in \mathbb{R}^n$

et T(S(J)) = j pour tout y ERh

On l'appelle l'inverse de T, notre T-1.

Preuve.

- Supposons que T est inversible. On a $T(S(\overline{b})) = \overline{b}$ pour tout $\overline{b} \in \mathbb{R}^n$.

 Ainsi, $T(\overline{x}) = \overline{b}$ admet au moins une solution pour tout $\overline{b} \in \mathbb{R}^n$ et T est surjective. Le théorème de caractérisation des matrices inversibles nous dit que dans ce cas, A est inversible.
- ⇒ Si A est inversible, alors l'application linéaire S: Rⁿ→ Rⁿ
 associée à A⁻¹ satisfait

$$S(T(\vec{x})) = \vec{x}$$
 pour tout $\vec{x} \in \mathbb{R}^n$
et $T(S(\vec{y})) = \vec{y}$ pour tout $\vec{y} \in \mathbb{R}^n$

et Test inversible.

Supposons que $U: \mathbb{R}^n \to \mathbb{R}^n$ satisfait aussi $U(T(\overline{x})) = \overline{x}$ et $T(U(\overline{y})) = \overline{y}$.

Comme T est surjective, pour tout $\overline{b} \in \mathbb{R}^n$ il existe (an mains) un $\overline{x} \in \mathbb{R}^n$ tel que $T(\overline{x}) = \overline{b}$. Ainsi, $S(T) = S(T(\overline{x})) = (S \circ T(\overline{x})) = \overline{x}$

$$S(\overline{t}) = S(T(\overline{x})) = (S \circ T)(\overline{x}) = \overline{x}$$

$$U(\overline{t}) = U(T(\overline{x})) = (U \circ T)(\overline{x}) = \overline{x}$$

$$\Rightarrow S(\overline{t}) = U(\overline{t}) \text{ pour tout } \overline{t} \in \mathbb{R}^n$$

$$\Rightarrow S = U. \blacksquare$$

Factorisations matricielles.

La factorisation est très utile en mathématiques. Elle permet par exemple de trouver les racines d'un polynôme: $p(x) = x^2 - 16 = (x+4)(x-4)$ Nous verrons sai que dans certaines situations, une matrice A peut s'exprimer comme le produit de deux matrices et que ceci peut faciliter la résolution du système $A\vec{x} = \vec{b}$.

Rappel.

Soit A=[aje] une matrice carrée de taille nxn.

- on dit que A est une matrice triangulaire supériéure si aje=0 pour tout j>k

- on dit que A est une matrice triangulaire inférieure

si aje=0 pour tout j<k

Exemple important.

Les matrices échelonnées sont des matrices triangulaires supérieures.

Propriétés

- Si A et B sont deux matrices triangulaires supérieures de même taille, alors AB et BA sont aussi triangulaires supérieures.
- Si A et B sont deux matrices triangulaires inférieures de même taille, alors AB et BA sont aussi triangulaires inférieures.
- Si A est une matrice triangulaire supérieure inversible, alors A-1 est aussi une matrice triangulaire supérieure.
- Si A est une matrice triangulaire injérieure inversible, alors A-1 est aussi une matrice triangulaire injérieure.

Définition.

Soit A=[ajk] une matrice triangulaire (supérieure ou inférieure) On dit que A est une matrice unitaire si ajj=1 pour tout j. Exemple.

Les matrices élémentaires de type III, associées aux opérations élémentaires de la forme Lj -> Lj + XLk sont des matrices unitaires. De plus:

- si k<j, alors elles sont triangulaires inférieures.
- si k>j, alors elles sont triangulaires supérienres.

Factorisation LU. (Lower-Upper)

Soit A une matrice carrée de taille nxn.

Supposons qu'il est possible d'échelonner la matrice A en utilisant uniquement des opérations élémentaires de type III de le forme

Soient E, Ez, ..., Ep les matrices élémentaires essociées aux opérations élémentaires utilisées dans l'échelonnement et soit U le matrice échelonnée obtenue.

Par construction now avons

$$E_p \cdots E_z \overline{E}_1 A = U$$

Comme E1,..., Ep sont inversibles, le produit Ep... En est inversible, et nous pouvons écrire:

Comme E,..., Ep sont triangulaires inférieures, la matrice $L = E_1^{-1} ... E_p^{-1}$

est aussi triangulaire inférieure.

Ainsi, dans ce cas, nous pouvons factoriser A:

A=LU où L'est triangulaire inférieure («Lower") et U est triangulaire supérieure («Upper")

De plus, par construction, la matrice L'est toujours inversible.

Exemple.

Trouver me factorisation LU de la matrice $A = \begin{bmatrix} 1 & 0 & 3 \\ -2 & 1 & -3 \\ -1 & 4 & 5 \end{bmatrix}$ On a:

$$\begin{bmatrix} 1 & 0 & 3 \\ -2 & 1 & -3 \\ -1 & 4 & 5 \end{bmatrix} \underbrace{ \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 3 \\ -1 & 4 & 5 \end{bmatrix}}_{L_3 \to L_3 + 1L_1} \underbrace{ \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 3 \\ 0 & 4 & 8 \end{bmatrix}}_{L_3 \to L_3 - 4L_2} \underbrace{ \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & -4 \end{bmatrix}}_{0}$$

d'on EzEzE, A=U avec

$$E_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, E_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -4 & 1 \end{bmatrix} \text{ et } \mathcal{U} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 0 & 3 \\ 0 & 0 & -4 \end{bmatrix}$$

$$L = E_1^{-1} E_2^{-1} E_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 4 & 1 \end{bmatrix}$$

et

A=LU (=)
$$\begin{bmatrix} 1 & 0 & 3 \\ -2 & 1 & -3 \\ -1 & 4 & 5 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 4 & 1 \end{bmatrix}}_{=L} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & -4 \end{bmatrix}$$

L'exemple précédent nous journit un algorithme pour construire L: Algorithme de construction de L:

Application.

Il est souvent nécessaire de résondre plusieurs systèmes associés à une matrice de coefficients donnée: $A\vec{x} = \vec{b}_1$, $A\vec{x} = \vec{b}_2$,..., $A\vec{x} = \vec{b}_3$ Les factorisations LU penvent raccourair le temps de calcul. Si l'on remplace A par LU:

$$A\vec{x} = \vec{b} \iff (LU)\vec{x} = \vec{b} \iff L(U\vec{x}) = \vec{b}$$

alors le résolution de $A\overrightarrow{x} = \overrightarrow{b}$ peut être remplacée par le résolution de deux systèmes $\begin{cases} U\overrightarrow{x} = \overrightarrow{y} \\ L\overrightarrow{y} = \overrightarrow{b} \end{cases}$

qui sont plus faciles à résoudre car L et U sont triangulaires.

Exemple.

Résondre AZ=5 où
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & -1 & 3 \\ -2 & 5 & 5 \end{bmatrix}$$
 et $b = \begin{bmatrix} 4 \\ 2 \\ 0 \end{bmatrix}$

On a:
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & -1 & 3 \\ -2 & 5 & 5 \end{bmatrix} \xrightarrow{L_2 \to L_2 - 2L_1} \begin{bmatrix} 2 & 1 & 3 \\ 0 & -3 & -3 \\ 0 & 6 & 8 \end{bmatrix} \xrightarrow{L_3 \to L_3 + 2L_2} \begin{bmatrix} 2 & 1 & 3 \\ 0 & -3 & -3 \\ 0 & 0 & 2 \end{bmatrix} = U$$

L'algorithme de construction de L hous donne: $L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -2 & 1 \end{bmatrix}$

$$L\vec{y} = \vec{b} \iff \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -2 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 0 \end{bmatrix} \iff \begin{cases} y_1 + y_2 = 2 \\ -y_1 - 2y_2 + y_3 = 0 \end{cases} \iff \begin{cases} y_1 = 4 \\ y_2 = -6 \\ y_3 = -8 \end{cases}$$

Ainsi, le solution cherchée est
$$\vec{z} = \begin{bmatrix} 5 \\ 6 \\ -4 \end{bmatrix}$$