L'espace \mathbb{R}^n

Définition. Une matrice de taille $m \times 1$ (c'est-à-dire formée d'une seule colonne) est appelée vecteur colonne ou vecteur.

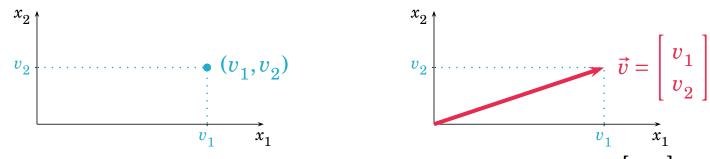
Les coefficients d'un vecteur (colonne) sont appelés composantes.

L'ensemble des vecteurs à deux composantes est noté \mathbb{R}^2 .

Les éléments de \mathbb{R}^2 sont de la forme

$$\vec{v} = \left[\begin{array}{c} v_1 \\ v_2 \end{array} \right], \qquad \text{avec } v_1, v_2 \in \mathbb{R} \,.$$

Remarque. Nous allons identifier les points du plan avec les vecteurs de \mathbb{R}^2 :



Le vecteur de composantes v_1 et v_2 sera noté parfois (v_1, v_2) au lieu de $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$.

Attention: Ne pas confondre (v_1, v_2) avec $\begin{bmatrix} v_1 & v_2 \end{bmatrix}$ (matrice de taille 1×2).

Opérations dans \mathbb{R}^2

Addition:

Si $\vec{v}, \vec{w} \in \mathbb{R}^2$, alors

$$\vec{v} + \vec{w} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} + \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \end{bmatrix} \in \mathbb{R}^2$$

Multiplication par un scalaire ¹ :

Si $\vec{v} \in \mathbb{R}^2$ et $\lambda \in \mathbb{R}$, alors

$$\lambda \vec{v} = \lambda \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} \lambda v_1 \\ \lambda v_2 \end{bmatrix} \in \mathbb{R}^2$$

Remarque. L'ensemble des vecteurs de la forme $\lambda \vec{v}$, avec $\lambda \in \mathbb{R}$, est la droite du plan qui passe par l'origine de vecteur directeur \vec{v} .

^{1.} Pour les physiciens, un scalaire est une quantité physique qui ne comporte qu'une grandeur. Pour les mathématiciens, un scalaire est un nombre.

De manière générale, nous pouvons définir \mathbb{R}^n , avec $n \ge 3$, comme l'ensemble des vecteurs (colonne) de la forme

$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}, \quad \text{avec } v_1, v_2, \dots, v_n \in \mathbb{R},$$

muni des opérations d'addition de vecteurs et multiplication par un scalaire :

• addition : si $\vec{v}, \vec{w} \in \mathbb{R}^n$, alors

$$\vec{v} + \vec{w} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} + \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \\ \vdots \\ v_n + w_n \end{bmatrix} \in \mathbb{R}^n$$

• multiplication par un scalaire : si $\vec{v} \in \mathbb{R}^n$ et $\lambda \in \mathbb{R}$, alors

$$\lambda \vec{v} = \lambda \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} \lambda v_1 \\ \lambda v_2 \\ \vdots \\ \lambda v_n \end{bmatrix} \in \mathbb{R}^n$$

Propriétés algébriques de \mathbb{R}^n

(A1) L'addition est commutative :

$$\vec{v} + \vec{w} = \vec{w} + \vec{v}$$
, pour tout $\vec{v}, \vec{w} \in \mathbb{R}^n$.

(A2) L'addition est associative :

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w}),$$
 pour tout $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$.

(A3) Le vecteur $\vec{0} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$ est l'élément neutre pour l'addition :

$$\vec{v} + \vec{0} = \vec{v}$$
 et $\vec{0} + \vec{v} = \vec{v}$ pour tout $\vec{v} \in \mathbb{R}^n$.

(A4) Le vecteur $-\vec{v} = (-1)\vec{v}$ est l'opposé de \vec{v} :

$$\vec{v} + (-\vec{v}) = \vec{0}$$
 et $(-\vec{v}) + \vec{v} = \vec{0}$

(A5) Si $\vec{v}, \vec{w} \in \mathbb{R}^n$ et $\alpha \in \mathbb{R}$ alors $\alpha(\vec{v} + \vec{w}) = \alpha \vec{v} + \alpha \vec{w}.$

(A6) Si
$$\vec{v} \in \mathbb{R}^n$$
 et $\alpha, \beta \in \mathbb{R}$ alors $(\alpha + \beta)\vec{v} = \alpha\vec{v} + \beta\vec{v}$.

(A7) Si $\vec{v} \in \mathbb{R}^n$ et $\alpha, \beta \in \mathbb{R}$ alors $(\alpha \beta)\vec{v} = \alpha(\beta \vec{v})$.

(A8) Si
$$\vec{v} \in \mathbb{R}^n$$
 alors $1\vec{v} = \vec{v}$.

Remarque. Nous verrons plus tard qu'il y a d'autres ensembles qui satisfont ces propriétés. Ce sont les *espaces vectoriels*.

Combinaisons linéaires

Définition. Soient $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k \in \mathbb{R}^n$ des vecteurs donnés.

Le vecteur

$$\vec{v} = \alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \dots + \alpha_k \vec{v}_k \in \mathbb{R}^n, \quad \text{avec } \alpha_1, \alpha_2, \dots, \alpha_k \in \mathbb{R},$$

est appelée $combinais on \ linéaire$ des vecteurs $\vec{v}_1, \ldots, \vec{v}_k$ de poids respectifs $\alpha_1, \ldots, \alpha_k$.

Exemple

Comme

$$3\begin{bmatrix}2\\5\end{bmatrix}+2\begin{bmatrix}4\\-7\end{bmatrix}=\begin{bmatrix}6\\15\end{bmatrix}+\begin{bmatrix}8\\-14\end{bmatrix}=\begin{bmatrix}14\\1\end{bmatrix},$$

le vecteur $\vec{v} = \begin{bmatrix} 14 \\ 1 \end{bmatrix}$ est combinaison linéaire des vecteurs $\vec{v}_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$ et $\vec{v}_2 = \begin{bmatrix} 4 \\ -7 \end{bmatrix}$ de poids respectifs $\alpha_1 = 3$ et $\alpha_2 = 2$.

Question: Considérons les vecteurs suivants:

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 5 \\ -2 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \quad \text{et} \quad \vec{v} = \begin{bmatrix} 11 \\ 19 \\ 6 \end{bmatrix}.$$

Est-ce que le vecteur \vec{v} peut s'écrire comme combinaison linéaire des vecteurs \vec{v}_1 et \vec{v}_2 ? Autrement dit, est-ce qu'il existe des nombres α_1 , $\alpha_2 \in \mathbb{R}$ tels que $\vec{v} = \alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2$? Nous avons :

$$\begin{bmatrix} 11 \\ 19 \\ 6 \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 \\ 5 \\ -2 \end{bmatrix} + \alpha_2 \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} \alpha_1 + 2\alpha_2 \\ 5\alpha_1 + \alpha_2 \\ -2\alpha_1 + 3\alpha_2 \end{bmatrix} \iff \begin{bmatrix} \alpha_1 + 2\alpha_2 = 11 \\ 5\alpha_1 + \alpha_2 = 19 \\ -2\alpha_1 + 3\alpha_2 = 6 \end{bmatrix}$$

Matrice augmentée :

$$\begin{bmatrix} 1 & 2 & 11 \\ 5 & 1 & 19 \\ -2 & 3 & 6 \end{bmatrix} \underbrace{ \begin{bmatrix} L_2 \to L_2 - 5L_1 \\ L_3 \to L_3 + 2L_1 \end{bmatrix} }_{ \begin{bmatrix} L_2 \to L_3 + 2L_1 \end{bmatrix} } \begin{bmatrix} 1 & 2 & 11 \\ 0 & -9 & -36 \\ 0 & 7 & 28 \end{bmatrix} \underbrace{ \begin{bmatrix} L_2 \to -\frac{1}{9}L_2 \\ L_2 \to -\frac{1}{7}L_2 \end{bmatrix} }_{ \begin{bmatrix} L_2 \to -\frac{1}{9}L_2 \\ 0 & 1 & 4 \end{bmatrix} \underbrace{ \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 4 \\ L_3 \to L_3 + 2L_1 \end{bmatrix} }_{ \begin{bmatrix} L_2 \to L_2 - 5L_1 \\ 0 & 0 & 0 \end{bmatrix}$$

Ainsi, \vec{v} est combinaison linéaire de \vec{v}_1 et \vec{v}_2 avec poids respectifs $\alpha_1 = 3$ et $\alpha_2 = 4$.

Remarque. La matrice augmentée est ici $\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v} \end{bmatrix}$.

Equations vectorielles

Considérons maintenant l'équation vectorielle

$$x_1\vec{a}_1 + x_2\vec{a}_2 + \ldots + x_k\vec{a}_k = \vec{b}$$
,

où $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_k, \vec{b} \in \mathbb{R}^n$ sont donnés et $x_1, x_2, \dots, x_k \in \mathbb{R}$ sont à déterminer.

Cette équation vectorielle possède la même solution générale que le système d'équations linéaires associé à la matrice augmentée $\begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_k & \vec{b} \end{bmatrix}$.

En particulier, nous avons l'équivalence suivante :

le vecteur \vec{b} est combinaison linéaire de $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_k$ le système d'équations linéaires associé à la matrice augmentée $\begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_k & | \vec{b} \end{bmatrix}$ est consistant

Définition. Soient $\vec{v}_1, \vec{v}_2, ..., \vec{v}_k \in \mathbb{R}^n$ des vecteurs donnés.

Le sous-ensemble de \mathbb{R}^n formé de toutes les combinaisons linéaires des vecteurs $\vec{v}_1,\ldots,\vec{v}_k$ est appelé partie (de \mathbb{R}^n) engendrée par les vecteurs $\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_k\in\mathbb{R}^n$, noté $\mathrm{Vect}\{\vec{v}_1,\ldots,\vec{v}_k\}$.

Nous avons donc

$$\operatorname{Vect}\{\vec{v}_1,\ldots,\vec{v}_k\} = \{\alpha_1\vec{v}_1 + \alpha_2\vec{v}_2 + \cdots + \alpha_k\vec{v}_k \in \mathbb{R}^n : \alpha_1,\alpha_2,\ldots,\alpha_k \in \mathbb{R}\} \subset \mathbb{R}^n.$$

En anglais, on note Span $\{\vec{v}_1, \dots, \vec{v}_k\}$.

Remarques.

• Par construction, pour chaque $j \in \{1, ..., k\}$, les vecteurs de la forme $\lambda \vec{v}_j$, avec $\lambda \in \mathbb{R}$, se trouvent dans $\text{Vect}\{\vec{v}_1, ..., \vec{v}_k\}$.

En particulier, en prenant $\lambda = 0$, nous trouvons que

$$\vec{0} \in \text{Vect}\{\vec{v}_1, \dots, \vec{v}_k\},\$$

quelque soit le choix des vecteurs $\vec{v}_1, ..., \vec{v}_k$.

Nous avons les équivalences suivantes :

 $\vec{b} \in \text{Vect}\{\vec{a}_1, \dots, \vec{a}_k\} \iff \text{le vecteur } \vec{b} \text{ est combinaison linéaire de } \vec{a}_1, \vec{a}_2, \dots, \vec{a}_k$

 \iff l'équation vectorielle $x_1\vec{a}_1 + x_2\vec{a}_2 + \ldots + x_k\vec{a}_k = \vec{b}$ possède (au moins) une solution

 \iff le système d'équations linéaires associé à la matrice augmentée $\left[\vec{a}_1 \ \vec{a}_2 \ \cdots \ \vec{a}_k \ \middle| \ \vec{b} \ \right]$ est consistant