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Ex 8.1 (A family of bases)
Find all b ∈ R such that the vectors

v1 =

1
1
1

 , v2 =

 2
−1
3

 , v3 =

1
b
0


form a basis of R3.

Solution:
We need to find all b such that the three vectors are linearly independent and span R3. Equiva-
lently, we want b such that the matrix with those three vectors as columns has an echelon form
with three pivots. So:  1 2 1

1 −1 b
1 3 0

 −→

 1 2 1
0 −3 b− 1
0 1 −1


 1 2 1

0 1 −1
0 −3 b− 1

 −→

 1 2 1
0 1 −1
0 0 b− 4


For b = 4, the bottom right entry is zero, so there are only two pivots, and the three vectors
do not form a basis.
For b ̸= 4, there are three pivots, so the vectors form a basis.

Ex 8.2 (Basis or not?)
Determine if {1 + t2, 1− t, 2− 4t+ t2, 6− 18t+ 9t2 − t3} is a basis for P3.

Solution:
According to Corollary 4.14 we can write each polynomial as a vector in R4 with respect to the
monomial basis and use row reduction to determine if these vectors are linearly independent.

1 1 2 6
0 −1 −4 −18
1 0 1 9
0 0 0 −1

 −→


1 2 2 6
0 −1 −4 −18
0 −1 −1 3
0 0 0 −1

 −→


1 2 2 6
0 −1 −4 −18
0 0 3 21
0 0 0 −1


Since this echelon form has four pivots, the four vectors are linearly independent and span R4.
Applying Corollary 4.14, the four polynomials form a basis for P3.



Ex 8.3 (Bases of column and kernel)
Let

A =


1 1 1 1
1 0 1 0
0 2 0 2
2 2 2 2

 .

(a) Find a basis for the column space of A.

(b) Find a basis for the kernel of A.

(c) What are the respective dimensions of the range and kernel of A?

Solution:

(a) We do column reduction on the matrix A:
1 1 1 1
1 0 1 0
0 2 0 2
2 2 2 2

 −→


1 0 0 0
1 −1 0 −1
0 2 0 2
2 0 0 0

 −→


1 0 0 0
1 −1 0 0
0 2 0 0
2 0 0 0

 −→


0 0 0 1
0 0 −1 1
0 0 2 0
0 0 0 2


Now A is in reduced column form and so its non-zero columns form a basis of Col(A)


1
1
0
2

 ,


0
−1
2
0


 is a basis of Col(A).

In particular, Col(A) has dimension 2.

Alternative solution (via row-reduction but be careful!)
We first do row reduction find the reduced row echelon form of A.

1 1 1 1
1 0 1 0
0 2 0 2
2 2 2 2

 −→


1 1 1 1
0 −1 0 −1
0 2 0 2
0 0 0 0

 −→


1 1 1 1
0 −1 0 −1
0 0 0 0
0 0 0 0



−→


1 1 1 1
0 1 0 1
0 0 0 0
0 0 0 0

 −→


1 0 1 0
0 1 0 1
0 0 0 0
0 0 0 0


We observe that the pivots are in the first and second column. Hence, a basis for the
column space is given by the first and second column of the original(!!!) matrix A, i.e.


1
1
0
2

 ,


1
0
2
2


 is a basis of Col(A).

In particular, Col(A) has dimension 2.

(By the way: For the matrix A in this problem, one can also see directly from the original
form of A that these two columns form a basis, because they are obviously independent
and the third and fourth are copies of them.)



(b) Looking at the reduced echelon form, we see that the solution set of Ax = 0 is described
by x1 = −x3 and x2 = −x4. The parametric vector form for this solution set is

x1

x2

x3

x4

 =


−s
−t
s
t

 = s ·


−1
0
1
0

+ t ·


0
−1
0
1

 ,

which leads to the basis 

−1
0
1
0

 ,


0
−1
0
1


 .

(c) dimKer(A) = 2 and dimRan(A) = dimCol(A) = 2, as the respective bases have two
elements each.

Ex 8.4 (Kernel and range)

(a) Let T : P3 → P3 be the linear transformation defined by T (p) = p′.
Find Ker(T ) and Ran(T ), as well as bases for each of them.

(b) Let T : P2 → R2 be the linear transformation defined by T (p(t)) =

(
p(0)
p′(0)

)
,

where p′ is the derivative of p. Find bases for Ker(T ) and Ran(T ).

Solution:

(a) Exactly as done in a similar example in class, we can check that Ker(T ) = {a0 : a0 ∈ R} =
P0.
Moreover, we know that {1} is a basis of P0 by Theorem 4.10.
So Ker(T ) = P0 and {1} is a basis for it.

It is easy to observe that derivating drops the degree of a given polynomial by one.
Hence a good guess for Ran(T ) is: Ran(T ) = P2.

Proof: Let p ∈ Ran(T ). This means that there exists q ∈ P3, so that T (q) = p.
We can write q as follows: q = b0 + b1x+ b2x

2 + b3x
3.

Now, we can compute: T (q) = q′ = b1 + 2b2x+ 3b3x
2 = p

So p ∈ P2 (its coefficients are a0 = b1, a1 = 2b2, a2 = 3b3).

For the other direction: Assume that p ∈ P2. So we can write p = a0 + a1x+ a2x
2.

We have to find a q ∈ P such that T (q) = p.
Define a candidate q by q = a0x+ 1

2
a1x

2 + 1
3
a2x

3.
We can now check (calculation) that indeed:
T (q) = q′ = a0x+ 21

2
a1x

2 + 31
3
a2x

3 = a0 + a− 1x+ a2x
2 = p.

(b) Claim: Ran(T ) = R2.

Proof: Since obviously Ran(T ) ⊂ R2, we are left to prove R2 ⊂ Ran(T ).

To this end, let

(
a
b

)
∈ R2. We have to find p ∈ P2 so that T (p) =

(
a
b

)
.

Define a candidate: p = a+ bx (of course, there are also other good candidates).
Then p(0) = a0, p

′ = b (for all x), and p′(0) = b.

So indeed T (p) =

(
a
b

)
.



As a basis of Ran(T ) we can just take the standard basis of R2:

{(
1
0

)
,

(
0
1

)}
.

For p = a0 + a1x+ a2x
2, T (a0 + a1x+ a2x

2) =

(
a0
a1

)
.

So T (p) =

(
0
0

)
if and only if a0 = a1 = 0 which means p = a2x

2.

So Ker(T ) = {a2x2 : a2 ∈ R} = Span{x2} and {x2} is a basis.

Ex 8.5 (A basis calculation)
Find a basis for the space spanned by the following vectors:

v1 =

 1
0
−3

 , v2 =

0
1
2

 , v3 =

−1
3
9

 , v4 =

 2
1
−6

 .

Solution:
We compute the column echelon form of the matrix made with v1, v2, v3 and v4 as column
vectors and find:1 0 −1 2

0 1 3 1
0 0 0 −1

 −→

1 0 0 0
0 1 0 0
0 0 0 −1

 −→

1 0 0 0
0 1 0 0
0 0 1 0

 .

and so the space spanned by the for vectors is simply R3 and a basis for this span would be
1
0
0

 ,

0
1
0

 ,

0
0
1

 .

Alternative solution:
We can also compute the row echelon form for the above matrix. In particular, the pivot
columns show that {v1, v2, v4} is a basis of the space Span(v1, v2, v3, v4).

Ex 8.6 (Getting acquainted with kernel and column space)
Let A be an m × n matrix, B an n × k matrix such that Ker(A) ∩ Col(B) = {0}, and B =
{b1, · · · , bk} a basis of Col(B).
Show that C = {Ab1, · · · , Abk} is a basis of Col(AB).

Solution:
We first show that the set generates Col(AB). By definition, every element in Col(AB) is of
the form A(Bx) for some x ∈ Rq. Since the vectors b1, . . . , bk generate Col(B), we can write
Bx =

∑k
i=1 µibi for some µi ∈ R. Thus

ABx =
k∑

i=1

µiAbi

and therefore {Ab1, . . . , Abk} generates Col(AB).

Next we show that the set is linearly independent. Assume that

λ1Ab1 + . . .+ λkAbk = 0.

Then A(λ1b1+ . . . λkbk) = 0, so that λ1b1+ . . .+λkbk ∈ Ker(A). But since the vectors b1, . . . , bk
are a basis for Col(B), this linear combination also lies in Col(B) and from the assumption we



infer that λ1b1+ . . .+λkbk = 0. Since the vectors b1, . . . , bk are linearly independent, we deduce
that λ1 = . . . = λk = 0, which proves the claim.

Ex 8.7 (Representing a vector in a different basis)
Let B = {b1, b2, b3} be the basis of R3 with

b1 =

1
2
0

 , b2 =

0
1
3

 , b3 =

1
1
1

 .

For the vector u =

−1
1
0

, determine [u]B.

Moreover, find the vector w such that [w]B =

 3
0
−1

.

Solution:
For the first part, we want to solve u = c1b1+ c2b2+ c3b3 for c1, c2, c3, which is a system of three
equations. So we use row reduction: 1 0 1 −1

2 1 1 1
0 3 1 0

 −→

 1 0 1 −1
0 1 −1 3
0 3 1 0

 −→

 1 0 1 −1
0 1 −1 3
0 0 4 −9



−→

 1 0 1 −1
0 1 −1 3
0 0 1 −9

4

 −→

 1 0 0 5
4

0 1 0 3
4

0 0 1 −9
4

 ⇒ [u]B =
1

4

 5
3
−9

 .

The second part can be computed as follows:

w = 3 · b1 + 0 · b2 + (−1)b3 = 3 ·

1
2
0

−

1
1
1

 =

 2
5
−1

 .

Ex 8.8 (More coordinate calculations)
We define:

B =


 1
−4
3

 ,

 5
2
−2

 ,

 4
−7
0

 and [x]B =

 3
0
−1

 . and y =

10
−9
1


Find the vector x (i.e. its coordinates in the standard basis) and find [y]B.

Solution:
The coordinates [x]B of x in the basis B are the coefficients of the development of x with the

basis vectors b1, b2 and b3. Thus, we have x = 3b1 − b3 =

−1
−5
9

 .

Here we are given y =

10
−9
1

 in the standard basis, and we have to find the coordinates of y in



the B basis. It is the reverse calculation of the previous point. We are looking for a, b and c such

that ab1+ bb2+ cb3 = y. Solving the corresponding linear equation yields [y]B =

a
b
c

 =

1
1
1

.

Ex 8.9 (New coordinates for polynomials)

Determine [t]B and [1 + t2]B for the basis B = {p1, p2, p3} of P2 where

p1(t) = 1 + t+ t2, p2(t) = 2t− t2, p3(t) = 2 + t− t2.

Solution:
We do row reduction on the augmented matrix whose columns are the coefficients of the poly-
nomials, and just for fun we’ll do them at the same time (the fourth column is t and the fifth
column 1 + t2): 1 0 2 0 1

1 2 1 1 0
1 −1 −1 0 1

 −→

 1 0 2 0 1
0 2 −1 1 −1
0 −1 −3 0 0

 −→

 1 0 2 0 1
0 1 3 0 0
0 2 −1 1 −1


−→

 1 0 2 0 1
0 1 3 0 0
0 0 −7 1 −1

 −→

 1 0 2 0 1
0 1 3 0 0
0 0 1 −1

7
1
7

 −→

 1 0 0 2
7

5
7

0 1 0 3
7

−3
7

0 0 1 −1
7

1
7


=⇒ [t]B =

1

7

 2
3
−1

 , [1 + t2]B =
1

7

 5
−3
1

 .

Ex 8.10 (More polynomial calculations)

(a) Show that the set F = {1 + t2, t+ t2, 1 + 2t+ t2} is a basis for P2.

(b) Find the coordinates vector of f(t) = 1 + 4t+ 7t2 in the basis F .

Solution:

(a) The standard basis of P2 is E = {1, t, t2}. In this basis, the coordinates of the elements of
F are given by 

1
0
1

 ,

0
1
1

 ,

1
2
1

 .

We can now consider the matrix P whose columns are these vectors and do row reduction
to show that it is equivalent to the identity matrix, which implies that F is indeed a basis.

(b) As the columns of P are the coordinates of the basis F in the standard basis, P is the matrix
of the change of coordinates from basis F to the standard basis E . We are looking for the
coordinates of f = 1 + 4t+ 7t2 in this basis, so we have to solve the system PF [f ]F = [f ]E
where [f ]E is the vector containing the coordinates of f in the standard basis:1 0 1

0 1 2
1 1 1

a
b
c

 =

1
4
7

 .

The solution of this system is given by [f ]F =

 2
6
−1

 .



Ex 8.11 (Dimension of the kernel) Let A ∈ Rn×n and assume that the dimension of
Ker(A) = 1. Can dimKer(A2) be equal to 0? Can it be equal to 1 or 2? Can it be larger than
2?

Tip: Start by trying to come up with a few simple examples of matricesA for which dimKer(A) =
1 and check what dimKer(A2) is.

(Beaware: the last question is more tricky than the others and is not a potential exam problem.)

Solution:

Once you start playing around with examples, you will very quickly find out that two cases are
possible: dimKer(A2) = 1 and dimKer(A2) = 2. For example:

For A =

(
1 0
0 0

)
, we have A2 = A and dimKer(A) = 1. This implies dimKer(A2) = 1.

For A =

(
0 1
0 0

)
, we have dimKerA = 1 and A2 = 0. So Ker(A2) = R2 and dimKer(A2) = 2.

You can easily generalize these examples to different sizes of matrices (try it!)

Playing around, you may have noticed that you cannot find examples for which dimKer(A2) is
0 or greater > 2. In fact, both these cases are not possible. The fact that 0 is not possible is
easy to prove:

Ker(A) ⊂ Ker(A2), So dimKer(A2) ≥ dimKer(A) = 1.

The fact that dimKer(A2) cannot be greater than 2 is harder to prove.

The intuition (non-formally speaking!) is: an element of Ker(A2) is either an element of Ker(A),
or, it is mapped by A onto Ker(A). Each of these two cases provides one direction worth of
vectors, that lie in Ker(A2). In certain cases, these two directions coincide (see first example).
So, in conclusion, we get at most two independent directions of vectors in Ker(A2).

Here is a formal proof:
We prove by contradiction. Namely, we will assume dimKer(A2) ≥ 3.

Since dimKer(A2) ≥ 3, there exists {x1, x2, x3} linearly independent and xi ∈ Ker(A2) for all
i = 1, 2, 3.

Since KerA ⊆ Ker(A2) (since if Ax = 0 then A2x = 0), we may assume that x1 ∈ KerA.

Observe Axi ∈ KerA for i = 2, 3 and so, as x1 span KerA (as it is one-dimensional), there
exists λ2, λ3 ∈ R such that

λ2x1 = Ax2, λ3x1 = Ax3.

Furthermore, observe that λ2, λ3 are non-zero since if λ2 = 0, then x2 ∈ KerA = span{x1}
which implies that {x1, x2} is linearly dependent (same argument holds for λ3).

So dividing by λi, we have x1 = A(λ−1
i xi) for i = 2, 3.

Subtracting the two expressions, we get

0 = x1 − x1 = A(λ−1
2 x2 − λ−1

3 x3).

This implies λ−1
2 x2 − λ−1

3 x3 ∈ KerA.

As KerA = span{x1}, this implies there exists some λ ∈ R such that

λ−1
2 x2 − λ−1

3 x3 = λx1

which shows that {x1, x2, x3} is linearly dependent which is a contradiction.
Hence, dimKer(A2) ≤ 2



Ex 8.12 (True/False questions)
Decide whether the following statements are always true or if they can be false.

(i) If V = Span(v1, . . . ,vk), then {v1, . . . ,vk} is a basis of V .

(ii) A spanning set of maximal size is a basis.

(iii) Suppose the matrix B is an echelon form of the matrix A. Then the pivot columns of B
form a basis for Col(A).

(iv) The columns of an invertible n× n matrix form a basis for Rn.

(v) A linearly independent set in a subspace H is a basis for H.

(vi) If V is a vector space and B a basis with n elements, then [x]B is a vector in Rn.

(vii) If V is a vector space with a finite basis B and PB is the change-of-coordinates matrix
from B to the standard basis, then [x]B = PB x for all x ∈ V .

Solution:

(i) False. To be a basis of V , the vectors would also have to be linearly independent. E.g.,{(
1
0

)
,

(
2
0

)}
is not a basis of Span

((
1
0

)
,

(
2
0

))
because they are not independent.

(ii) False. A linearly independent set of maximal size must be a basis; a spanning set of
minimal size must also be a basis. But a maximal spanning set would just be the whole
vector space, which is obviously not a basis.

(iii) False. Columns of A that correspond to pivot columns of its reduced echelon form (i.e.,
columns Ai1 , . . . , Aik of A such that B has a pivot in columns i1, . . . , ik) form a basis for
Col(A). (Those columns are (perhaps confusingly) called “pivot columns of A”.) Two
row equivalent matrices do not have to have the same column space, so a column of an
echelon form need not even be in the column space of the original matrix

For instance, think of the matrix

1 0
0 1
0 1

, whose reduced echelon form is

1 0
0 1
0 0

. The

pivot columns of the reduced echelon form are


1
0
0

 ,

0
1
0

, but they do not form a

basis for the column space of the original matrix, in fact the second vector is not even in
that column space.

(iv) True. The columns of A are linearly independent because if a linear combination x1A1+
. . . + xnAn of the columns of A is zero, then Ax = 0 and hence x = A−1Ax = A−10 = 0.
They also span Rn because y = A(A−1y) for all y ∈ Rn.

(v) False. The set must also span H.

(vi) True. This is a consequence of the definition of the B-coordinates.

(vii) False. By definition one has PB[x]B = x for all x ∈ V .


