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SOLUTIONS for Homework 7

Ex 7.1 (Non-subspaces of the plane)
Show that none of the following sets is a subspace of R*:

a) S;={(z,y) eR?: 2 >0,y >0};
b) Sy ={(x,y) eR?*: z-y >0}
c) S3={(z,y) e R?: 22 + y* < 1}.

(By the way, can you tell what each of these sets looks like? Try to draw them!)

Solution:

a) Consider (z,y) = (1,0) € S; and A = —1. Then A(z,y) = (—1,0) ¢ S; and hence S is not
a vector space.

Note that (0,0) € S; and v+ w € S; for all v,w € Sy, so that is the only subspace axiom that
property fails.

b) Consider (z,y) = (1,0) € Sy and (s,t) = (0, —1) € Sy. Then (z,y) + (s,t) = (1,—1) ¢ S5,
and hence S5 is not a vector space.
Again the other two subspace axioms are satisfied by Ss.

c¢) Consider the point (z,y) = (1,0) and A = 2. Then \(z,y) = (2,0), but 22 = 4 > 1, so that
Az,y) ¢ S3. Hence S5 is not a vector space.

Alternative, you could argue that (z,y) = (1,0) and (2/,y’) = (0,1) are both in S5 but their
sum 1s not.

Drawings: S is the first quadrant of the coordinate system (including non-negative parts of
the z-axis and y-axis).

Sy is the first and third quadrant of the coordinate system (including the z-axis and y-axis).
Ss is the closed unit disk (that is, the disk with center 0 and radius 1 including its boundary
circle)

Ex 7.2 (Is it a vector space?)

For each of the following sets (equipped with the obvious addition and scalar multiplication),
decide whether it is a vector space and prove your result.

x x x

A= yl: x=0,, B= yl:y=1,, C= yl: z=y
2 z z
x

D= y|: zy2€{0,-1,1} 5, E={f:R>—R’linear: f(e;) =0}



Solution:

e A is a vector space. We have that A is a subspace of R?. Indeed, it is clear that 0 € A.
Moreover, if z,y € A, then

(r+yh =21+ =0+0=0
implying that x +y € A. Finally, if A € R and x € A, then

implying Az € A. Now by Lemma 4.2, any subspace of a vector space is itself a vector
space, thus A is a vector space.

e B is not a vector space since it does not contain 0.

e ( is a vector space. Again, by Lemma 4.2, it suffices to show C' is a subspace of R3. It
is clear that 0 € C. If z,y € C, then

(Tty =2+ =23 +ys = (T +Y)3
which implies x +y € C. Finally, if A € R and x € C, then
(Ax)g = Ao = A3 = (A\2)3
implying that Az € C. Thus, C is a subspace of R? as required.

e D is not a vector space since

1 1
1l eD, but2|1]¢D
1 1

which violates subspace axiom (S1).

Alternatively, you could argue as follows: The set D only contains 27 elements (as each
of the three coordinate of a vector has three possible values, so there are 3% elements).
Hence it is a finite subset of R?® and by Exercise 7.6, the only possible finite subspace has
1 element (which is the zero element).

e F is a vector space. We've seen that the space of linear functions
V={f:R®—= R*: f linear}

equipped with point-wise addition and point-wise scalar multiplication forms a vector
space. Thus, by Lemma 4.2, it suffices to show that E is a subspace of V. 0 € E as the
zero map maps e; to 0. If f,g € E, then

and thus, f +¢ € F. Finally, if f € E and A € R, then

(Af)(er) = Af(er) =A-0=0

implying A\f € E. Consequently, F is a subspace of V' as claimed.



Ex 7.3 (Spaces of polynomials)

Let P, be the vector space of polynomials of degree less than or equal to n. Determine if each
of the following sets is a subspace of P, for a given n. (You may take for granted that P, is a
vector space.)

a) The set of polynomials of the form p(t) = at? where a is an arbitrary real number.
b) The set of polynomials of the form p(t) = a + t* where a is an arbitrary real number.

c¢) The set of polynomials of the form p(t) = c;t® + cot® + c3t + ¢4, where ¢y, ¢o, c3 and ¢y are
non-negative integers.

d) The set of polynomials in P, that satisfy p(0) = 0.

Solution:

a) The set of polynomials of the form p(t) = at? is the set spanned by the element t2 of P;
thus is it a subspace by Theorem 4.3.

b) The set of polynomials of the form p(t) = a + t* is not a subspace because it does not
contain the zero polynomial.

¢) The set of polynomials with integer coefficients is not a sub-space. This is because mul-
tiplying one of its element with /2 € R, we get a polynomial whose coefficients are not
integers.

d) The set of polynomials of degree less than or equal to n such that p(0) = 0 is a subspace
of P, because

— the zero polynomial clearly belongs to this set,

— the sum of two polynomials which are zero when evaluated in zero is also zero when
evaluated in zero,

— if p(0) = 0, then Ap(0) = 0 for A an arbitrary real number.

Ex 7.4 (Sum of subspaces)
Let V be a vector space and let S and T" be subspaces of V. Prove that:

(a) SNT is a subspace of V
(b) S+ T is a subspace of V

(c) SUT is not a subspace of V.

Solution:

a) We show that S N7 satisfy the desired properties:
e Since S and T are both subspaces, 0 € S and 0 € T and so, 0 € SNT.

o If x.y € SNT, it follows that z,y € S and so, x +y € S. Similarly, z,y € SNT
also implies that z,y € T and so, x +y € T. Thus, by definition of the intersection,
r+yesSnT.



e et \é Rand x € SNT. Then, as x € S implies Ax € S and similarly, € T implies
Ax € T, it follows that Az € SNT as required.

b) We show that S + T satisfy the desired properties

e Since S and T are both subspaces, they both contain the zero vector 0 of V', hence S +T
contains 0 + 0 = 0.

o If s+¢and s’ +1t are elements of S+ T, then (s+¢t)+ (s +t)=(s+ )+ (t+1)isan
element of S+ T, because s+ € Sandt+t € T.

o If s+1¢is an element of S+ 7', and A € R, then \- (s+1t) = (As) + (At) is also an element
of S+ T, because A\s € S and At € T.

c) For this, we construct a counter example: Let V = R? and let S be the span of e; and T be
the span of e;. They are both subspaces by Theorem 4.3. Now, by observing that e;,e; € SUT
while e; + €3 ¢ S U T since neither S nor T' contains e; + eq, it follows that S U T is not a
subspace.

Ex 7.5 (A subspace of polynomials)
Let P53 be the vector space of polynomials p(t) of degree at most 3.

(a) Let S be the subspace spanned by
pi(t) =1+1%, po(t) =3t +4t%, ps(t) =1+t + 5t + 4t°.
Is 1+ 2t + 3t* + 4¢% an element of S?

(b) Define P; to be the set of polynomials of degree exactly 3. Is P; a vector space?

Solution:

a) We need to check whether there exist real numbers ¢, ¢y, ¢3 such that
c1pr(t) + copa(t) + csps(t) = 14 2t + 3% + 4¢°.

Let us write the left-hand side explicitly collecting the coefficients in from of each monomial,
ie.,
(c14c3) - 1+ (3ca + c3)t + (1 + 5ea)t® + (deg + 4es)t® = 14 2t + 3% + 4t°.

As the monomials are linearly independent, this leads to the condition
Cl+03:1, 3CQ+03:2, Cl+563:3, 4CQ+403:4.

This is a system of linear equations that we can solve with row reduction as follows:

1 0 11 1 0 1]1 1 0 1]1
03 1j2 | 0312 |01 3/3
1 0 5|3 00 4|2 00 42
0 4 4|4 0 4 4|4 0 4 44
10 1|1 1003
0 1 ]2 01 0|1
313 2
“loo1|l] 7 loon|l
00 2|3 0 0 0[O0



From the echelon form, we see that the system has a solution, so we know that the polynomial
is indeed an element of S. The coefficients are ¢; = ¢o = ¢35 = %
b) No since it does not contain the zero polynomial.

Ex 7.6 (The only finite subspaces is {0,}.)

Let V' be a vector space and Oy its zero element. Prove that {0y} is the only subspace of V'
that consists of only finitely many elements.

Solution:

Let H be a subspace of V and suppose that it is not {Oy}. We will show that it contains
infinitely many elements.

Since H is a subspace, {Oy} C H and thus, H # {0y} implies that there exists some x € H
where x # Oy.

Moreover, H is a subspace implies that, for all £ € R: kz € H.

We will prove the following claim:

Claim: for each k, kx is a different element of H.

To prove Ex.7.6, it suffices to prove the claim because R has infinitely many elements and so
there are infinitely many different elements of H that have the form kz.

Proof of claim: Let k1 # ks be two numbers in R. Assume for a contradiction that kyx = kox.
Then, it follows that (k1 — k2)x = 0.

By assumption k; — ko # 0. So we can divide both side of the equation by k; — ks.

This implies = 0 which contradicts the fact that z # 0.

Ex 7.7 (Column space and kernel)

1 0 11
(a) Does v = [ —2 | lie in the column space of A= [ 2 1 0|7 Does it lie in its kernel?
2 -3 4 1
1 2 -3
(b) Let B=[4 —1 0 |. Find a nonzero vector u € Col(B) and a nonzero vector v €
0 -3 4

Ker(B). Is there a nonzero vector that lies in both Col(B) and Ker(B)?

(c) Express the kernel of the following matrix in parametric vector form:

A:

N O ==
NN O -
N O = =
NN O -

Solution:

(a) We want to know if there is a solution to the system Az = v, so we solve this system by
row reduction:

0 1 1]1 2 1 0]-2 1 1 0]-1
2 10/-2] — | 0 1 1]1 — [ 0 1 1]1
-3 4 1] 2 -3 4 1] 2 -3 4 1|2
1 5 0]-1 11 0|-1 1 1 0]-1
— [0 1 1]1 — 01 1|1 — 01 1|1
04 1]-1 00 -2 -2 0012



()

14 0]-1 1 00|

— [0 10 —13‘5% — [0 10 —133

00 1% 00 1%

And indeed: . 0 . .
v= | —2 :—z 2 14 1 +1— 0],

2 I\=3) 2\4) 2\

so v lies in Col(A). Of course, we could have stopped the row reduction the moment we
saw that there were three non-zero entries on the diagonal.
To see if v is in the kernel of A, we simply calculate:

0 1 1\ /1 0 0
Av=|(2 1 o|[-2|=(0]|#][0],
3 4 1) \ 2 -9 0

so it is not.

Finding a nonzero vector in the column space is easy, we can just take any column of
the matrix. To find a column in the kernel we’ll have to do row reduction on the system
Bx =0:

1 2 =3|0 1 2 =310 1 2 =310
4 -1 0|0 — 0 -9 120 — 0O 0 010
0 -3 4|0 0 -3 410 0 -3 410
12 =30 10 —%|0
— {01 —3]0] — | 01 —3]0
0 00 00 010
So all solutions are given by x = ¢/3, y = 4t/3, z = t, and for instance ¢ = 3 gives the
1
nonzero vector v = | 4 | in the kernel
3
To find a vector that is in both, note that all vectors in the kernel have the form
T 1
y|l=s-v=s-|4
z 3

So if any of these is in the column space, then so is v. Therefore we can answer this by
seeing if the system Bz = v has a solution, using row reduction:

1 2 =31 1 2 =31 1 2 3]0
4 -1 0 |4 — 0 -9 120 — 0O 0 0 ]-9
0 -3 4|3 0 -3 4 |3 0 -3 410

So this system has no solution, hence there is no nonzero vector that is in both the column
space and the kernel.

We do row reduction:

11110 1 1 1 1 1 1 1 1
101 0]0 N 0 -1 0 -1 N 0 -1 0 -1
020 20 0 2 0 2 0 0 0 0
22 2 210 0O 0 0 O 0 0 0 0



1111 1 010
R 01 01 R 0101
00 0O 00 0O
00 0O 00 0O
This is the reduced echelon form, so the solution set of Az = 01is 21 = —x3 and 29 = —x4.

Introducing s and t as parameters for x3 and z4, we get that the parametric vector form
of the solution set is

T —s —1 0
) . —t . 0 -1
x|l | s | 5 1| t 0
T4 t 0 1
Ex 7.8 (Column space and kernel)
(a) Consider
2 1 3 —5/2
w= |1 and A=|-3 -2 4
2 2 4 -4
Find out if w is in Col A, in Ker A, or both.
1 1 5 1
(b) Find bases for the kernel, the column space, and the row space of A= (2 4 14 4
2 3 12 3

Solution:

(a)
w is in Ker A because Aw = 0. w is in Col A because the system Az = w is consistent. (You
can have a look at the reduced echelon form of its augmented matrix. A possible solution of

Ar =wisz = (—1,1,0).)
(b)

Follow the steps of Example (x) from class (Week 7). You will find that the reduced row echelon
form of A is

1030
0121
0000

In conclusion, you get the following bases for the kernel, row space, and column space of A:

=) [ WG ) [0
BKer(A) = 1 ) 0 BCOI(A) = 2, 4 ) BROW(A) = 3|12 s
0 1 2 3 0 1

Please be aware that different solutions are possible as no vector space has a unique basis. (If
you followed the steps from Example (x) from class, the bases you obtain are exacly as above.)
No matter what the elements of the bases in our own solutions are (e.g. if they are different
from the above solution), the number of elements in each basis must be exactly as in the above
solution.

If you need a repetition, the following youtube video goes over this exact example:
https://www.youtube.com/watch?v=AVWT1NkTNfw



Ex 7.9 ((When) do linear maps preserve linear (in)dependence?)
Let V and W be two vector spaces, ' : V' — W a linear transformation and {vy,...,v,} a
subset of V.

1. Show that if the set {vy,...,v,} is linearly dependent, then the set {T'(vy),...,T(vp)} is
linearly dependent too.

2. Assume T is an injective transformation : T'(u) = T'(v) = u = v. Show that if the set
{T'(v1),...,T(v,)} is linearly dependent, then the set {vq,...,v,} is linearly dependent
too.

Solution:

1. If {vy,...,v,} are linearly dependent, then there exist c1, ..., ¢,, such that not all ¢;’s are
zero and
1+ ...+, = 0.

As T is linear,
T(Clvl + ...+ vap) = T(O) =0

and hence
al(v)+...+¢,T(v,) =T(crv1 + ...+ ¢vp) = 0.

As not all ¢;’s are zero, {T'(v1),...,T(v,)} are linearly dependent.

2. We prove the statement by proving its contraposition, i.e., that if {T'(v1),...,T(v,)} are
linearly dependent, then so are {vy,...,v,}.

If {T'(v1),...,T(v,)} are linearly dependent, then there exist ¢y, ..., ¢, , such that not all
¢;’s are zero and
aT(v) +...+¢T(v,) =0.

As T is linear, 0 = T'(0). Hence
T(cyvy+ ...+ cvy) =T (v1) + ...+ ¢, T(vy,) =0=T(0).
As T is injective by assumption, this equation implies that c;v1 + ... 4+ ¢,v, = 0, which

shows that the vectors {vy,...,v,} are linearly dependent.

Ex 7.10 (A subspace and a possible basis)
Let S C R* be the subset of vectors (1, 2o, 73, 24)7 satisfying the equations

r1—2x3+x4=0, x9+3x3=0, and z;— x4 =0.

Show that S is a subspace of R*. Find a basis for S.

Solution:

We check the three conditions for being a subspace. The zero vector is in S because it satisfies
those equations. If (21,9, 23, 24) and (y1, Yo, Y3, ys) satisfy those equations, then so do (z; +
Y1, To + Yo, T3 + Y3, T4 + y4) and (cxy, cxo, cxs, cxy), because for instance

(x1+vy1) —2(zs+ys) + (va+ys) = (1 — 223+ x4) + (11 —2y2 +y4) =04+ 0=0,

(cx1) — 2(cx3) + (cxy) = c- (11 — 223+ 24) = -0 =0,

and the same for the other two equations.



Alternatively, S can be described as the kernel of the matrix
3
0

Therefore, in order to find a basis, we can use row reduction to find all solutions of the following
system of equations:

10 -2 110 1 0 — 110
01 3 010 0 1 010
10 0 =110 0 0 -210
1 0 -2 1 1 00 —-110
— 01 3 0 010 310
00 1 -1 0 001 —-1|0
—> x4 =1t1is a free variable, z; =1, xy=-3t, x3=1.
We can write the solutions in vector form like so:
T t 1
Z3 o t o 1
Ty t 1
This means that
1
-3
1
1

is a basis for S, because it spans S (every element of S is a linear combination of elements of
the basis, which in this case is just a multiple of that one vector), and it is linearly independent
(containing a single nonzero vector).

Ex 7.11 (The range of linear maps)
Let V, W be vector spaces and T : V' — W be linear. Show that Ran(T") is a subspace of W.

Solution:

By linearity, we have that 7'(0y) = T(0-0y) = 0-T(0y) = Oy, so that Oy € Ran(T).
Moreover, if wy,wy € Ran(T), then by definition there exist vy,ve € V' such that w; = T'(vy)
and we = T'(vg). Then by linearity of 7" we have T'(vy 4+ vo) = T'(v1) + T'(v2) = wy + wa, SO
that wy; +wy € Ran(T). Finally, for A € R we have that T'(Avy) = A\T'(v1) = Awy, so that also
Aw; € Ran(T'). Thus Ran(T') satisfies all properties of a subspace of W.

Ex 7.12 (True/False questions)

Decide whether the following statements are always true or if they can be false.

(i) Let V' be the vector space of functions f : R — R. Then the set of functions such that
f(3) =0 is a subspace.

(ii) Let V be the vector space of functions f : R — R. Then the set of functions such that
f(3) - f(6) =0 is a subspace.



(iii) Let Mayo be the vector space of all 2 x 2 matrices, and let S be the subset of matrices of

the form (g Ii) with a,b € R. Then S is a subspace.

(iv) Let A € R™". If Ker(A) = {0} then Ker(A?) = {0}.
(v) Let A € R™". Then Ker(A) = {0} if and only if Ran(A) = R™.
(vi) Let A € R™". Then Ker(A) = R" if and only if Ran(A) = {0}.

Solution:

(i) True: The zero function (f(x) = 0 for all x € R) satisfies the condition. If f and g are in
V', then so is f 4+ g because (f +¢)(3) = f(3) +¢9(3) =0+0=0. If f(3) =0and ce R
then (cf)(3) =c- f(3) =c-0=0.

(ii) False: The zero vector is there and V' contains scalar multiples, but it does not contain
all sums. For instance, let f1(3) = 1 and fi(¢f) = 0 for all t # 3, and let f»(6) = 1 and
fa(t) =0 for all t # 6. Then f1(3)- f1(6) =1-0=0and f>(3) - fo(6) =0-1 =0, so both
are in this set. But f; + fy has

(fir+12)3) - (fi+ [2)(6) = (f1(3) + f2(3)) - (f1(6) + f2(6)) = (1 +0) - (0+ 1) =1,
so is not in this set.

(iii) False: It is not a subspace, for instance because it does not contain the zero matrix, or

because o , /
a b a b a+a b+0
(0 1>+(0 1)_(0 2)€S
because of the wrong entry at position (2, 2).

(iv) True: Let = € Ker(A?%). We want to prove that z must be the zero vector.
x € Ker(A?) means that A%z = 0.
This can also be written as A(Ax) = 0. Hence Az € Ker(A).
So by our assumption that Ker(A) = {0}, it follows that Az = 0.
But this means that x € Ker(A). Again, by the same assumption, this implies that = 0.

(v) True: Ker(A) = {0} means that the linear transformation f(z) = Ax is injective. Since
A is square, by the alphabet Theorem (Thm.2.7) it follows that f is surjective. But this
means Ran(f) = R", which is equivalent to Ran(A) = R".

(vi) True: Ker(A) = R™ means that for every x € R”, Az = 0. This means that 0 is the only
element in Ran(A).



