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Ex 7.1 (Non-subspaces of the plane)
Show that none of the following sets is a subspace of R2:

a) S1 = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0};

b) S2 = {(x, y) ∈ R2 : x · y ≥ 0};

c) S3 = {(x, y) ∈ R2 : x2 + y2 ≤ 1}.

(By the way, can you tell what each of these sets looks like? Try to draw them!)

Solution:
a) Consider (x, y) = (1, 0) ∈ S1 and λ = −1. Then λ(x, y) = (−1, 0) /∈ S1 and hence S1 is not
a vector space.
Note that (0, 0) ∈ S1 and v + w ∈ S1 for all v, w ∈ S1, so that is the only subspace axiom that
property fails.

b) Consider (x, y) = (1, 0) ∈ S2 and (s, t) = (0,−1) ∈ S2. Then (x, y) + (s, t) = (1,−1) /∈ S2,
and hence S2 is not a vector space.
Again the other two subspace axioms are satisfied by S2.

c) Consider the point (x, y) = (1, 0) and λ = 2. Then λ(x, y) = (2, 0), but 22 = 4 > 1, so that
λ(x, y) /∈ S3. Hence S3 is not a vector space.
Alternative, you could argue that (x, y) = (1, 0) and (x′, y′) = (0, 1) are both in S3 but their
sum is not.

Drawings: S1 is the first quadrant of the coordinate system (including non-negative parts of
the x-axis and y-axis).
S2 is the first and third quadrant of the coordinate system (including the x-axis and y-axis).
S3 is the closed unit disk (that is, the disk with center 0 and radius 1 including its boundary
circle)

Ex 7.2 (Is it a vector space?)

For each of the following sets (equipped with the obvious addition and scalar multiplication),
decide whether it is a vector space and prove your result.

A =


x
y
z

 : x = 0

 , B =


x
y
z

 : y = 1

 , C =


x
y
z

 : z = y


D =


x
y
z

 : x, y, z ∈ {0,−1, 1}

 , E =
{
f : R3 → R3 linear : f(e1) = 0

}



Solution:

• A is a vector space. We have that A is a subspace of R3. Indeed, it is clear that 0 ∈ A.
Moreover, if x, y ∈ A, then

(x+ y)1 = x1 + y1 = 0 + 0 = 0

implying that x+ y ∈ A. Finally, if λ ∈ R and x ∈ A, then

(λx)1 = λx1 = λ · 0 = 0

implying λx ∈ A. Now by Lemma 4.2, any subspace of a vector space is itself a vector
space, thus A is a vector space.

• B is not a vector space since it does not contain 0.

• C is a vector space. Again, by Lemma 4.2, it suffices to show C is a subspace of R3. It
is clear that 0 ∈ C. If x, y ∈ C, then

(x+ y)2 = x2 + y2 = x3 + y3 = (x+ y)3

which implies x+ y ∈ C. Finally, if λ ∈ R and x ∈ C, then

(λx)2 = λx2 = λx3 = (λx)3

implying that λx ∈ C. Thus, C is a subspace of R3 as required.

• D is not a vector space since 1
1
1

 ∈ D, but 2

1
1
1

 /∈ D

which violates subspace axiom (S1).

Alternatively, you could argue as follows: The set D only contains 27 elements (as each
of the three coordinate of a vector has three possible values, so there are 33 elements).
Hence it is a finite subset of R3 and by Exercise 7.6, the only possible finite subspace has
1 element (which is the zero element).

• E is a vector space. We’ve seen that the space of linear functions

V = {f : R3 → R3 : f linear}

equipped with point-wise addition and point-wise scalar multiplication forms a vector
space. Thus, by Lemma 4.2, it suffices to show that E is a subspace of V . 0 ∈ E as the
zero map maps e1 to 0. If f, g ∈ E, then

(f + g)(e1) = f(e1) + g(e1) = 0 + 0 = 0

and thus, f + g ∈ E. Finally, if f ∈ E and λ ∈ R, then

(λf)(e1) = λf(e1) = λ · 0 = 0

implying λf ∈ E. Consequently, E is a subspace of V as claimed.



Ex 7.3 (Spaces of polynomials)

Let Pn be the vector space of polynomials of degree less than or equal to n. Determine if each
of the following sets is a subspace of Pn for a given n. (You may take for granted that Pn is a
vector space.)

a) The set of polynomials of the form p(t) = at2 where a is an arbitrary real number.

b) The set of polynomials of the form p(t) = a+ t2 where a is an arbitrary real number.

c) The set of polynomials of the form p(t) = c1t
3 + c2t

2 + c3t+ c4, where c1, c2, c3 and c4 are
non-negative integers.

d) The set of polynomials in Pn that satisfy p(0) = 0.

Solution:

a) The set of polynomials of the form p(t) = at2 is the set spanned by the element t2 of P2;
thus is it a subspace by Theorem 4.3.

b) The set of polynomials of the form p(t) = a + t2 is not a subspace because it does not
contain the zero polynomial.

c) The set of polynomials with integer coefficients is not a sub-space. This is because mul-
tiplying one of its element with

√
2 ∈ R, we get a polynomial whose coefficients are not

integers.

d) The set of polynomials of degree less than or equal to n such that p(0) = 0 is a subspace
of Pn because

– the zero polynomial clearly belongs to this set,

– the sum of two polynomials which are zero when evaluated in zero is also zero when
evaluated in zero,

– if p(0) = 0, then λp(0) = 0 for λ an arbitrary real number.

Ex 7.4 (Sum of subspaces)

Let V be a vector space and let S and T be subspaces of V . Prove that:

(a) S ∩ T is a subspace of V

(b) S + T is a subspace of V

(c) S ∪ T is not a subspace of V .

Solution:

a) We show that S ∩ T satisfy the desired properties:

• Since S and T are both subspaces, 0 ∈ S and 0 ∈ T and so, 0 ∈ S ∩ T .

• If x, y ∈ S ∩ T , it follows that x, y ∈ S and so, x + y ∈ S. Similarly, x, y ∈ S ∩ T
also implies that x, y ∈ T and so, x + y ∈ T . Thus, by definition of the intersection,
x+ y ∈ S ∩ T .



• Let λ ∈ R and x ∈ S ∩ T . Then, as x ∈ S implies λx ∈ S and similarly, x ∈ T implies
λx ∈ T , it follows that λx ∈ S ∩ T as required.

b) We show that S + T satisfy the desired properties

• Since S and T are both subspaces, they both contain the zero vector 0 of V , hence S+T
contains 0 + 0 = 0.

• If s+ t and s′ + t′ are elements of S + T , then (s+ t) + (s′ + t′) = (s+ s′) + (t+ t′) is an
element of S + T , because s+ s′ ∈ S and t+ t′ ∈ T .

• If s+ t is an element of S+T , and λ ∈ R, then λ · (s+ t) = (λs)+ (λt) is also an element
of S + T , because λs ∈ S and λt ∈ T .

c) For this, we construct a counter example: Let V = R2 and let S be the span of e1 and T be
the span of e2. They are both subspaces by Theorem 4.3. Now, by observing that e1, e2 ∈ S∪T
while e1 + e2 /∈ S ∪ T since neither S nor T contains e1 + e2, it follows that S ∪ T is not a
subspace.

Ex 7.5 (A subspace of polynomials)

Let P3 be the vector space of polynomials p(t) of degree at most 3.

(a) Let S be the subspace spanned by

p1(t) = 1 + t2, p2(t) = 3t+ 4t3, p3(t) = 1 + t+ 5t2 + 4t3.

Is 1 + 2t+ 3t2 + 4t3 an element of S?

(b) Define P̃3 to be the set of polynomials of degree exactly 3. Is P̃3 a vector space?

Solution:

a) We need to check whether there exist real numbers c1, c2, c3 such that

c1p1(t) + c2p2(t) + c3p3(t) = 1 + 2t+ 3t2 + 4t3.

Let us write the left-hand side explicitly collecting the coefficients in from of each monomial,
i.e.,

(c1 + c3) · 1 + (3c2 + c3)t+ (c1 + 5c3)t
2 + (4c2 + 4c3)t

3 = 1 + 2t+ 3t2 + 4t3.

As the monomials are linearly independent, this leads to the condition

c1 + c3 = 1, 3c2 + c3 = 2, c1 + 5c3 = 3, 4c2 + 4c3 = 4.

This is a system of linear equations that we can solve with row reduction as follows:
1 0 1 1
0 3 1 2
1 0 5 3
0 4 4 4

 −→


1 0 1 1
0 3 1 2
0 0 4 2
0 4 4 4

 −→


1 0 1 1
0 1 1

3
2
3

0 0 4 2
0 4 4 4



−→


1 0 1 1
0 1 1

3
2
3

0 0 1 1
2

0 0 8
3

4
3

 −→


1 0 0 1

2

0 1 0 1
2

0 0 1 1
2

0 0 0 0





From the echelon form, we see that the system has a solution, so we know that the polynomial
is indeed an element of S. The coefficients are c1 = c2 = c3 =

1
2
.

b) No since it does not contain the zero polynomial.

Ex 7.6 (The only finite subspaces is {0v}.)
Let V be a vector space and 0V its zero element. Prove that {0V } is the only subspace of V
that consists of only finitely many elements.

Solution:

Let H be a subspace of V and suppose that it is not {0V }. We will show that it contains
infinitely many elements.
Since H is a subspace, {0V } ⊆ H and thus, H ̸= {0V } implies that there exists some x ∈ H
where x ̸= 0V .
Moreover, H is a subspace implies that, for all k ∈ R: kx ∈ H.
We will prove the following claim:

Claim: for each k, kx is a different element of H.

To prove Ex.7.6, it suffices to prove the claim because R has infinitely many elements and so
there are infinitely many different elements of H that have the form kx.

Proof of claim: Let k1 ̸= k2 be two numbers in R. Assume for a contradiction that k1x = k2x.
Then, it follows that (k1 − k2)x = 0.
By assumption k1 − k2 ̸= 0. So we can divide both side of the equation by k1 − k2.
This implies x = 0 which contradicts the fact that x ̸= 0.

Ex 7.7 (Column space and kernel)

(a) Does v =

 1
−2
2

 lie in the column space of A =

 0 1 1
2 1 0
−3 4 1

? Does it lie in its kernel?

(b) Let B =

1 2 −3
4 −1 0
0 −3 4

 . Find a nonzero vector u ∈ Col(B) and a nonzero vector v ∈

Ker(B). Is there a nonzero vector that lies in both Col(B) and Ker(B)?

(c) Express the kernel of the following matrix in parametric vector form:

A =


1 1 1 1
1 0 1 0
0 2 0 2
2 2 2 2

 .

Solution:

(a) We want to know if there is a solution to the system Ax = v, so we solve this system by
row reduction: 0 1 1 1

2 1 0 −2
−3 4 1 2

 −→

 2 1 0 −2
0 1 1 1
−3 4 1 2

 −→

 1 1
2

0 −1
0 1 1 1
−3 4 1 2


−→

 1 1
2

0 −1
0 1 1 1
0 11

2
1 −1

 −→

 1 1
2

0 −1
0 1 1 1
0 0 −9

2
−13

2

 −→

 1 1
2

0 −1
0 1 1 1
0 0 1 13

9





−→

 1 1
2

0 −1
0 1 0 −4

9

0 0 1 13
9

 −→

 1 0 0 −7
9

0 1 0 −4
9

0 0 1 13
9


And indeed:

v =

 1
−2
2

 = −7

9

 0
2
−3

− 4

9

1
1
4

+
13

9

1
0
1

 ,

so v lies in Col(A). Of course, we could have stopped the row reduction the moment we
saw that there were three non-zero entries on the diagonal.
To see if v is in the kernel of A, we simply calculate:

Av =

 0 1 1
2 1 0
−3 4 1

 1
−2
2

 =

 0
0
−9

 ̸=

0
0
0

 ,

so it is not.

(b) Finding a nonzero vector in the column space is easy, we can just take any column of
the matrix. To find a column in the kernel we’ll have to do row reduction on the system
Bx = 0: 1 2 −3 0

4 −1 0 0
0 −3 4 0

 −→

 1 2 −3 0
0 −9 12 0
0 −3 4 0

 −→

 1 2 −3 0
0 0 0 0
0 −3 4 0



−→

 1 2 −3 0
0 1 −4

3
0

0 0 0 0

 −→

 1 0 −1
3

0
0 1 −4

3
0

0 0 0 0


So all solutions are given by x = t/3, y = 4t/3, z = t, and for instance t = 3 gives the

nonzero vector v =

1
4
3

 in the kernel

To find a vector that is in both, note that all vectors in the kernel have the formx
y
z

 = s · v = s ·

1
4
3

 .

So if any of these is in the column space, then so is v. Therefore we can answer this by
seeing if the system Bx = v has a solution, using row reduction: 1 2 −3 1

4 −1 0 4
0 −3 4 3

 −→

 1 2 −3 1
0 −9 12 0
0 −3 4 3

 −→

 1 2 −3 0
0 0 0 −9
0 −3 4 0


So this system has no solution, hence there is no nonzero vector that is in both the column
space and the kernel.

(c) We do row reduction:
1 1 1 1 0
1 0 1 0 0
0 2 0 2 0
2 2 2 2 0

 −→


1 1 1 1
0 −1 0 −1
0 2 0 2
0 0 0 0

 −→


1 1 1 1
0 −1 0 −1
0 0 0 0
0 0 0 0





−→


1 1 1 1
0 1 0 1
0 0 0 0
0 0 0 0

 −→


1 0 1 0
0 1 0 1
0 0 0 0
0 0 0 0


This is the reduced echelon form, so the solution set of Ax = 0 is x1 = −x3 and x2 = −x4.
Introducing s and t as parameters for x3 and x4, we get that the parametric vector form
of the solution set is 

x1

x2

x3

x4

 =


−s
−t
s
t

 = s ·


−1
0
1
0

+ t ·


0
−1
0
1

 .

Ex 7.8 (Column space and kernel)
(a) Consider

w =

2
1
2

 and A =

 1 3 −5/2
−3 −2 4
2 4 −4

 .

Find out if w is in ColA, in KerA, or both.

(b) Find bases for the kernel, the column space, and the row space of A =

1 1 5 1
2 4 14 4
2 3 12 3


Solution:

(a)
w is in KerA because Aw = 0. w is in ColA because the system Ax = w is consistent. (You
can have a look at the reduced echelon form of its augmented matrix. A possible solution of
Ax = w is x = (−1, 1, 0).)

(b)
Follow the steps of Example (⋆) from class (Week 7). You will find that the reduced row echelon
form of A is 1 0 3 0

0 1 2 1
0 0 0 0


In conclusion, you get the following bases for the kernel, row space, and column space of A:

BKer(A) =



−3
−2
1
0

 ,


0
−1
0
1


 BCol(A) =


1
2
2

 ,

1
4
3

 , BRow(A) =



1
0
3
0

 ,


0
1
2
1


 ,

Please be aware that different solutions are possible as no vector space has a unique basis. (If
you followed the steps from Example (⋆) from class, the bases you obtain are exacly as above.)
No matter what the elements of the bases in our own solutions are (e.g. if they are different
from the above solution), the number of elements in each basis must be exactly as in the above
solution.
If you need a repetition, the following youtube video goes over this exact example:
https://www.youtube.com/watch?v=AVWTlNkTNfw



Ex 7.9 ((When) do linear maps preserve linear (in)dependence?)
Let V and W be two vector spaces, T : V → W a linear transformation and {v1, . . . , vp} a
subset of V .

1. Show that if the set {v1, . . . , vp} is linearly dependent, then the set {T (v1), . . . , T (vp)} is
linearly dependent too.

2. Assume T is an injective transformation : T (u) = T (v) ⇒ u = v. Show that if the set
{T (v1), . . . , T (vp)} is linearly dependent, then the set {v1, . . . , vp} is linearly dependent
too.

Solution:

1. If {v1, . . . , vp} are linearly dependent, then there exist c1, . . . , cp, such that not all ci’s are
zero and

c1v1 + . . .+ cpvp = 0.

As T is linear,
T (c1v1 + . . .+ cpvp) = T (0) = 0

and hence
c1T (v1) + . . .+ cpT (vp) = T (c1v1 + . . .+ cpvp) = 0.

As not all ci’s are zero, {T (v1), . . . , T (vp)} are linearly dependent.

2. We prove the statement by proving its contraposition, i.e., that if {T (v1), . . . , T (vp)} are
linearly dependent, then so are {v1, . . . , vp}.
If {T (v1), . . . , T (vp)} are linearly dependent, then there exist c1, . . . , cp , such that not all
ci’s are zero and

c1T (v1) + . . .+ cpT (vp) = 0.

As T is linear, 0 = T (0). Hence

T (c1v1 + . . .+ cpvp) = c1T (v1) + . . .+ cpT (vp) = 0 = T (0).

As T is injective by assumption, this equation implies that c1v1 + . . . + cpvp = 0, which
shows that the vectors {v1, . . . , vp} are linearly dependent.

Ex 7.10 (A subspace and a possible basis)
Let S ⊂ R4 be the subset of vectors (x1, x2, x3, x4)

T satisfying the equations

x1 − 2x3 + x4 = 0, x2 + 3x3 = 0, and x1 − x4 = 0.

Show that S is a subspace of R4. Find a basis for S.

Solution:
We check the three conditions for being a subspace. The zero vector is in S because it satisfies
those equations. If (x1, x2, x3, x4) and (y1, y2, y3, y4) satisfy those equations, then so do (x1 +
y1, x2 + y2, x3 + y3, x4 + y4) and (cx1, cx2, cx3, cx4), because for instance

(x1 + y1)− 2(x3 + y3) + (x4 + y4) = (x1 − 2x3 + x4) + (y1 − 2y2 + y4) = 0 + 0 = 0,

(cx1)− 2(cx3) + (cx4) = c · (x1 − 2x3 + x4) = c · 0 = 0,

and the same for the other two equations.



Alternatively, S can be described as the kernel of the matrix 1 0 −2 1
0 1 3 0
1 0 0 −1

 .

Therefore, in order to find a basis, we can use row reduction to find all solutions of the following
system of equations:  1 0 −2 1 0

0 1 3 0 0
1 0 0 −1 0

 −→

 1 0 −2 1 0
0 1 3 0 0
0 0 2 −2 0



−→

 1 0 −2 1 0
0 1 3 0 0
0 0 1 −1 0

 −→

 1 0 0 −1 0
0 1 0 3 0
0 0 1 −1 0


=⇒ x4 = t is a free variable, x1 = t, x2 = −3t, x3 = t.

We can write the solutions in vector form like so:
x1

x2

x3

x4

 =


t

−3t
t
t

 = t ·


1
−3
1
1

 .

This means that 


1
−3
1
1




is a basis for S, because it spans S (every element of S is a linear combination of elements of
the basis, which in this case is just a multiple of that one vector), and it is linearly independent
(containing a single nonzero vector).

Ex 7.11 (The range of linear maps)
Let V,W be vector spaces and T : V → W be linear. Show that Ran(T ) is a subspace of W .

Solution:
By linearity, we have that T (0V ) = T (0 · 0V ) = 0 · T (0V ) = 0W , so that 0W ∈ Ran(T ).
Moreover, if w1, w2 ∈ Ran(T ), then by definition there exist v1, v2 ∈ V such that w1 = T (v1)
and w2 = T (v2). Then by linearity of T we have T (v1 + v2) = T (v1) + T (v2) = w1 + w2, so
that w1 + w2 ∈ Ran(T ). Finally, for λ ∈ R we have that T (λv1) = λT (v1) = λw1, so that also
λw1 ∈ Ran(T ). Thus Ran(T ) satisfies all properties of a subspace of W .

Ex 7.12 (True/False questions)

Decide whether the following statements are always true or if they can be false.

(i) Let V be the vector space of functions f : R → R. Then the set of functions such that
f(3) = 0 is a subspace.

(ii) Let V be the vector space of functions f : R → R. Then the set of functions such that
f(3) · f(6) = 0 is a subspace.



(iii) Let M2×2 be the vector space of all 2× 2 matrices, and let S be the subset of matrices of

the form

(
a b
0 1

)
with a, b ∈ R. Then S is a subspace.

(iv) Let A ∈ Rn×n. If Ker(A) = {0} then Ker(A2) = {0}.

(v) Let A ∈ Rn×n. Then Ker(A) = {0} if and only if Ran(A) = Rn.

(vi) Let A ∈ Rn×n. Then Ker(A) = Rn if and only if Ran(A) = {0}.

Solution:

(i) True: The zero function (f(x) = 0 for all x ∈ R) satisfies the condition. If f and g are in
V , then so is f + g because (f + g)(3) = f(3) + g(3) = 0 + 0 = 0. If f(3) = 0 and c ∈ R
then (cf)(3) = c · f(3) = c · 0 = 0.

(ii) False: The zero vector is there and V contains scalar multiples, but it does not contain
all sums. For instance, let f1(3) = 1 and f1(t) = 0 for all t ̸= 3, and let f2(6) = 1 and
f2(t) = 0 for all t ̸= 6. Then f1(3) · f1(6) = 1 · 0 = 0 and f2(3) · f2(6) = 0 · 1 = 0, so both
are in this set. But f1 + f2 has

(f1 + f2)(3) · (f1 + f2)(6) = (f1(3) + f2(3)) · (f1(6) + f2(6)) = (1 + 0) · (0 + 1) = 1,

so is not in this set.

(iii) False: It is not a subspace, for instance because it does not contain the zero matrix, or
because (

a b
0 1

)
+

(
a′ b′

0 1

)
=

(
a+ a′ b+ b′

0 2

)
̸∈ S

because of the wrong entry at position (2, 2).

(iv) True: Let x ∈ Ker(A2). We want to prove that x must be the zero vector.
x ∈ Ker(A2) means that A2x = 0.
This can also be written as A(Ax) = 0. Hence Ax ∈ Ker(A).
So by our assumption that Ker(A) = {0}, it follows that Ax = 0.
But this means that x ∈ Ker(A). Again, by the same assumption, this implies that x = 0.

(v) True: Ker(A) = {0} means that the linear transformation f(x) = Ax is injective. Since
A is square, by the alphabet Theorem (Thm.2.7) it follows that f is surjective. But this
means Ran(f) = Rn, which is equivalent to Ran(A) = Rn.

(vi) True: Ker(A) = Rn means that for every x ∈ Rn, Ax = 0. This means that 0 is the only
element in Ran(A).


