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MATH-111(en) Fall 2024

Linear Algebra Annina Iseli

SOLUTIONS for Homework 6

Ex 6.1 (The determinant of triangular matrices)
Let A ∈ Rn×n be a lower (resp. upper) triangular matrix. Show that the determinant of A
equals the product of its diagonal elements, i.e., det(A) = a11 · . . . · ann =

∏n
i=1 aii.

Hint: Lower triangular A: use the definition of the determinant and induction on n. Upper triangular

A: use that det(AT ) = det(A).

Solution:
As suggested in the hint, we start considering an lower triangular matrix A, that is, its coef-
ficients satisfy aij = 0 whenever j > i. For n = 1, the statement is true. Now assume that it
holds for matrices of size (n − 1) × (n − 1). Since a1j = 0 for all j ≥ 2, the definition of the
determinant yields

det(A) = a11 det(A11).

Since A11 is obtained from A by deleting the first row and the first column, the matrix A11 is
still a lower triangular matrix (formal argument: the coefficient (A11)ij is given by a(i+1)(j+1),
so that j > i implies j + 1 > i+ 1 and therefore (A11)ij = 0 for such indices; but reasoning by
intuition suffices in this case). Moreover, the diagonal elements of A11 are given by a22, . . . , ann
and therefore the induction hypothesis gives

det(A) = a11 ·
n∏

i=2

aii =
n∏

i=1

aii.

When A is an upper triangular matrix, then AT is a lower triangular matrix with the same
diagonal elements. Hence the claim follows from det(A) = det(AT ) and the result for lower
triangular matrices.

Ex 6.2 (Row reduction and the determinant)
Let A ∈ Rn×n and assume that A1 is obtained from A by applying an elementary operation on
the rows or columns of A. Show that

det(A) =


− det(A1) if two rows or columns have been swapped,

λ−1 det(A1) if a row or column has been multiplied by λ ̸= 0,

det(A1) if a multiple of a row (resp. column) has been added to another row (resp. column).

Hint: We know that A1 = EA for some elementary matrix E.

Solution:
Using the equation A1 = EA and the multiplicativity of the determinant, we know that
det(A1) = det(E) det(A), while the determinant of elementary matrices is given by Lemma
3.3. In particular, we have

det(E) =


−1 if E swaps two rows,

λ if E multiplies a row by λ ̸= 0,

1 if E adds a multiple of a row to another row.



Thus the claim follows by noticing that det(A) = det(A1)/ det(E). The respective statements
for columns follow by either repeating the same argument for A1 = EA, or, by taking transposes.

Ex 6.3 (Different methods for computing determinants)
Compute the determinant of each of the following matrices in three ways: Once using cofactor
expansion across a row, once using cofactor across a column, and once with row reduction.

A =

2 0 0
2 1 2
0 3 4

 , B =

1 2 3
4 5 0
0 8 0



Solution:
We expand A over the first row:

det(A) = 2 · det(A11)− 0 · det(A12) + 0 · det(A13) = 2 det

(
1 2
3 4

)
= 2 · (1 · 4− 2 · 3) = −4;

Next we expand A over the first column:

det(A) = 2 · det(A11)− 2 · det(A21) + 0 · det(A31) = 2 det

(
1 2
3 4

)
− 2 det

(
0 0
3 4

)
= −4;

Finally, we use row reduction. Because here we only use the operation that adds a multiple of
a row to another row, we get the same determinant everywhere, and we don’t have to multiply
by any factor.

det(A) = det

2 0 0
2 1 2
0 3 4

 = det

2 0 0
0 1 2
0 3 4

 = det

2 0 0
0 1 2
0 0 −2

 = 2 · 1 · (−2) = −4.

When doing cofactor expansion, we can choose what row or column to do it over, and often
it’s easiest to pick a row or column with a lot of zeros, since then the expansion will have fewer
terms. For B, it is easiest to expand over the third row and third column. (Of course, it isn’t
wrong to use a different row or column.)

det(B) = 0 · det(A31)− 8 · det(A32) + 0 · det(A33) = −8 · det
(
1 3
4 0

)
= −8 · (1 · 0− 3 · 4) = 96;

det(B) = 3 · det(A13)− 0 · det(A23) + 0 · det(A33) = 3 · det
(
4 5
0 8

)
= 3 · (4 · 8− 5 · 0) = 96;

When row reducing B, it is convenient to divide the second row by −3, so we have to multiply
the determinant by −3 (or in other words, we multiply the row by 1/(−3), so we have to
multiply the determinant by 1/(1/(−3)) = −3).

det(B) = det

1 2 3
4 5 0
0 8 0

 = det

1 2 3
0 −3 −12
0 8 0

 = −3 · det

1 2 3
0 1 4
0 8 0



= −3 · det

1 2 3
0 1 4
0 0 −32

 = −3 · 1 · 1 · (−32) = 96.



We can also do it with only replacement, by adding 8/3 times the second row to the third row:

det(B) = det

1 2 3
4 5 0
0 8 0

 = det

1 2 3
0 −3 −12
0 8 0

 = det

1 2 3
0 −3 −12
0 0 −32

 = 1 · (−3) · (−32) = 96.

Ex 6.4 (Determinants based on another determinant)
Let

A =

a b c
d e f
g h i


and assume that det(A) = 7. Compute the determinants of the following matrices

B =

a+ d b+ e c+ f
d e f
g h i

 , C =

 a b c
2d+ a 2e+ b 2f + c

g h i

 .

Solution:
det(B) = 7. Indeed, we obtained this matrix from the original matrix by adding the second
row to the first row, which does not change the value of the determinant.
det(C) = 14. Indeed, we obtained this matrix from the original one by multiplying the second
row by 2, which multiplies the determinant by 2, then by adding the first row to the second,
which does not change the value of the determinant.

Ex 6.5 (More determinants)
Compute the determinants of the following matrices (You may use your preferred method or
try to practice different methods.)

A =

1 2 3
1 0 0
2 1 1

 , B =


1 1 0 −1
1 1 1 0
0 1 0 1
1 2 3 1

 , C =


10 5 10 5
6 9 0 −3
3 0 0 3
1 0 1 1


Solution:
For the first matrix, let’s use cofactor expansion over the second row (note that the sign in
front of the cofactor of a21 is (−1)2+1 = −1):

det

1 2 3
1 0 0
2 1 1

 = −1 · det
(
2 3
1 1

)
= −(2 · 1− 3 · 1) = 1.

For the second matrix, let’s use row reduction:

det


1 1 0 −1
1 1 1 0
0 1 0 1
1 2 3 1

 = det


1 1 0 −1
0 0 1 1
0 1 0 1
0 1 3 2

 = − det


1 1 0 −1
0 1 3 2
0 1 0 1
0 0 1 1

 = − det


1 1 0 −1
0 1 3 2
0 0 −3 −1
0 0 1 1



= − det


1 1 0 −1
0 1 0 1
0 0 −3 −1
0 0 0 2

3

 = −
(
1 · 1 · (−3) · 2

3

)
= 2.



For the third matrix we can use a combination of row reduction and cofactor expansion (this
is often a good combination): With row reduction we create a row or column with a single
nonzero entry, then we expand on that row or column.

det


10 5 10 5
6 9 0 −3
3 0 0 3
1 0 1 1

 = 5·3·3·det


2 1 2 1
2 3 0 −1
1 0 0 1
1 0 1 1

 = 45 det


2 1 2 1
2 3 0 −1
1 0 0 1
0 0 1 0

 = −45 det

2 1 1
2 3 −1
1 0 1



= −45 det

0 1 −1
0 3 −3
1 0 1

 = −45 det

(
1 −1
3 −3

)
= −45(1 · (−3)− (−1) · 3) = 0.

Ex 6.6 (Determinant of an antidiagonal matrix)
Find the determinant of the following antidiagonal matrix:

0 0 0 a
0 0 b 0
0 c 0 0
d 0 0 0


What is the determinant of an n×n antidiagonal matrix with all its antidiagonal entries equal
to 2?

Solution:

det


0 0 0 a
0 0 b 0
0 c 0 0
d 0 0 0

 = − det


d 0 0 0
0 0 b 0
0 c 0 0
0 0 0 a

 = (−1)2 det


d 0 0 0
0 c 0 0
0 0 b 0
0 0 0 a

 = (−1)2abcd = abcd.

For an n × n antidiagonal matrix with all its antidiagonal entries equal to 2, if we can write
n = 2k or n = 2k + 1, then the determinant is (−1)k2n. This is because we can use k row
interchanges to make it diagonal: We first interchange the first and n-th row, then the second
and (n − 1)-th row, etc., similar to in the example. If n = 2k is even, we will be done after k
steps, and if n = 2k + 1 is odd, then we are also done after k steps, because the middle entry
can stay where it is.

Ex 6.7 (Determinants and volume)

(a) Calculate the volume of the parallelepiped with the following vertices:0
0
0

 ,

1
4
0

 ,

−2
−5
2

 ,

−1
2
−1

 ,

−1
−1
2

 ,

 0
6
−1

 ,

−3
−3
1

 ,

−2
1
1

 .

(b) Calculate the area of the triangle whose vertices are the points (1, 2), (2, 4), (3, 3) ∈ R2.

Solution:

(a) We first have to determine which vertices determine the parallelepiped. If we call the second
vector u, the third v, and the fourth w, then u+ v is the fifth vector, u+w is the sixth,



v + w is the seventh, and finally u + v + w is the eighth. That means that the vertices
u,v,w determine the parallelepiped.

Then the volume of the parallelepiped is the absolute value of the determinant of the matrix
with these vectors for columns (in any order, because changing the order won’t change the
absolute value).

volume =

∣∣∣∣∣∣det
1 −2 −1
4 −5 2
0 2 −1

∣∣∣∣∣∣ =
∣∣∣∣∣∣det

1 −2 −1
0 3 6
0 2 −1

∣∣∣∣∣∣
=

∣∣∣∣∣∣det
1 −2 −1
0 3 6
0 0 −5

∣∣∣∣∣∣ = |1 · 3 · (−5)| = 15.

(b) This triangle has the same area as the triangle spanned by

(
0
0

)
and the two vectors(

3
3

)
−

(
1
2

)
=

(
2
1

)
and

(
2
4

)
−

(
1
2

)
=

(
1
2

)
. Or, equivalently, after a translation by

−
(
1
2

)
we get the three vectors

(
0
0

)
,

(
1
2

)
,

(
2
1

)
, and their triangle must have the same

area.

The area of that triangle is half the area of the parallelogram spanned by

(
2
1

)
and

(
1
2

)
,

which is the determinant of the matrix obtained by taking those two vectors as columns.
So

area of the triangle =
1

2
det

(
2 1
1 2

)
=

1

2
(2 · 2− 1 · 1) = 3

2
.

Ex 6.8 (Abstract determinant calculations)
Show that

(a) if A is an invertible matrix, then det(A−1) = 1/ detA,

(b) if A and P are square matrices, with P invertible, then det(PAP−1) = detA,

(c) if U is a square matrix such that UTU = I, then detU = ±1,

(d) if A is a square matrix such that det(A4) = 0, then A cannot be invertible.

Solution:

(a) (detA)(detA−1) = det(AA−1) = det I = 1, and thus detA−1 = 1/ detA.

(b) det(PAP−1) = (detP )(detA)(detP−1) = det(PP−1)(detA) = (det I)(detA) = detA.

(c) 1 = det I = det(UTU) = (detUT )(detU) = (detU)2, and thus detU = ±1.

(d) 0 = detA4 = (detA)4, and thus detA = 0, which implies that A is not invertible.

Ex 6.9 (Multiple choice and True/False questions)

a) Let A be an n× n matrix with nonzero determinant. Then det(A+ A) =
(A) 0 (B) det(A) (C) 2 det(A) (D) 2n det(A).



b) In the following, we assume that all the matrices involved are square matrices. Decide
whether the following statements are always true or if they can be false.

(i) The following matrix is invertible. 
0 0 0 4
2 0 4 3
1 0 2 5
3 6 1 8


(ii) The (i, j)-cofactor of a square matrix A is the matrix Aij obtained by deleting form A

its i-th row and j-th column.

(iii) If A and B are both n× n, then det(A+B) = det(A) + det(B).

(iv) If A and B are row equivalent, i.e., they can be obtained from each other by finitely
many elementary operations, then they have the same determinant.

(v) The linear transformation associated to A is injective if and only if det(A) ̸= 0.

(vi) The determinant of A is the product of the pivots in any echelon form U of A, multiplied
by (−1)r, where r is the number of row interchanges made during row reduction from
A to U .

(vii) The determinant of A is the product of the diagonal entries in A.

(viii) If detA is zero, then two rows or two columns are the same, or a row a column is zero.

Solution:

a) The answer is (D). A + A (or 2A) is obtained from A by doubling each of the rows.
We know that multiplying a row by a number c multiplies the determinant by c. Since we
multiply each of n rows with 2, the determinant becomes 2n det(A).

b) (i) False. The determinant is easy to calculate by cofactor expansion over the first row,
and then for the 3× 3 determinant using cofactor expansion over the second column:

det


0 0 0 4
2 0 4 3
1 0 2 5
3 6 1 8

 = 0·det(A11)−0·det(A12)+0·det(A13)−4·det(A14) = −4·det

2 0 4
1 0 2
3 6 1



= (−4) · (−6) · det
(
2 4
1 2

)
= (−4) · (−6) · (2 · 2− 4 · 1) = 0.

So the matrix is not invertible.
We could of course also have done this with row reduction, but in this case the deter-
minant is faster.

(ii) False. There is also the factor (−1)i+j.

(iii) False. Take for instance A =

(
2 1
0 0

)
and B =

(
0 0
1 1

)
. Then det(A) + det(B) =

0 + 0 = 0, but det(A+B) = 1.

(iv) False. If B is obtained from A by a row interchange, or by multiplying a row by a
number other than 0 or 1, then they are row equivalent, but have different determinant.



(v) True. We saw that det(A) ̸= 0 if and only if A is invertible, and by the Invertible
Matrix Theorem that we saw earlier, this is equivalent to the transformation defined
by A being injective (if A is square).

(vi) False. There may be factors coming from multiplying a row by a scalar λ /∈ {0, 1}.
(vii) False. For instance, if bc ̸= 0, then

det

(
a b
c d

)
= ad− bc ̸= ad.

(viii) False. Rows or columns can be linearly dependent without one of them being zero or
two of them being equal to each other.


