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Ex 14.1 (Orthogonal diagonalization)

Orthogonally diagonalize the matrices A =

(
9 −2
−2 6

)
and B =


4 −3 0 0
−3 12 0 0
0 0 4 −3
0 0 −3 12


Solution: Solution for A: The characteristic polynomial of A is

χA(λ) = 50− 15λ+ λ2 = (λ− 10)(λ− 5).

Its roots and hence the eigenvalues of A are λ1 = 10, λ2 = 5.

By solving (10I2 − A)v = 0, we find the eigenvector

(
2
−1

)
for λ1 = 10;

by solving (5I2 − A)v = 0, we find the eigenvector and

(
1
2

)
for λ2 = 5.

As A is symmetric, and v1,v2 are eigenvectors for different eigenvalues, we know that they are
already orthogonal. So we only need to normalize them:

u1 :=
1
||v1||v1 =

1√
5

(
2
−1

)
and u2 :=

1√
5

(
1
2

)
.

Set U = 1√
5

(
1 2
2 −1

)
and hence A = UDUT = 1√

5

(
1 2
2 −1

)(
5 0
0 10

)(
1√
5

(
1 2
2 −1

))
.

(Observe that by coincidence, U is symmetric in this exercise.)

Solution for B: The characteristic polynomial of B is

χB(λ) = λ4 − 32λ3 + 334λ2 − 1248λ+ 1521 = (λ2 − 16λ+ 39)2 = (−13 + λ)2(−3 + λ)2.

(It’s ok if you used your calculator to find the roots for this one.) So B has two eigenvalues
13 and 3. Each has algebraic multiplicity 2, so we write λ1 = λ2 = 13, λ3 = λ4 = 3. Since B
is symmetric, each eigenvalue must also have geometric multiplicity = 2, i.e., each eigenvalue
must have two independent eigenvectors. Find them by solving the equation (13I4 − B)v = 0
respectively (3I4 − B)v = 0, or, by clever guessing. This yields eigenvectors v1 = (−1, 3, 0, 0)T

and v2 = (0, 0,−1, 3)T for 13; and v3 = (0, 0, 3, 1)T and v4 = (3, 1, 0, 0)T for 3. (Depending on
how you solved the system, your vectors might look slightly different.)
Since B is symmetric, we know: every eigenvector of 13 is orthogonal to every eigenvector of
3. Hence, we only need to check orthogonality within {v1, v2} and within {v3, v4}. And in fact,
we can easily compute that v1 · v2 = 0 and v3 · v4 = 0.

(If that were not the case (e.g. if you found different eigenvectors), the orthogonalize by using
Gram Schmidt, see example (*) below.)

Hence {v1, v2, v3, v4} is an orthogonal eigenbasis for B. Normalizing ui := 1
||vi||vi yields the



following orthonormal eigenbasis of B: u1 = ( −1√
10
, 3√

10
, 0, 0)T , u2 = (0, 0, −1√

10
, 3√

10
)T , u3 =

(0, 0, 3√
10
, 1√

10
)T , u4 = ( 3√

10
, 1√

10
, 0, 0)T . Hence

U =


−1√
10

0 0 3√
10

3√
10

0 0 1√
10

0 −1√
10

3√
10

0

0 3√
10

1√
10

0

 , D =


13 0 0 0
0 13 0 0
0 0 3 0
0 0 0 3

 and A = UDUT

(∗) For example, the eigenvectors of 13 that you have found might be v1 = (−1, 3,−1, 3)T and
v2 = (0, 0,−1, 3)T . In this case, they are not orthogonal (v1× v2 ̸= 0). Applying Gram-Schmidt
to {v1, v2} yields u1 = v1 = (−1, 3,−1, 3)T , u2 = (1

2
,−3

2
,−3

2
, 3
2
). Then proceed normalizing

them and continue as above.
In particular, there are many different possibilities for U , depending on which v1, v2, v3, v4 that
you started with. But there is only one solution for D (up to reordering the diagonal elements).
You can easily verify whether the U that you found is correct by just computing UDUT and
checking whether the columns of your U are orthonormal.

Ex 14.2 (Orthogonal diagonalization with some help)
Consider

A =

 5 −4 −2
−4 5 2
−2 2 2

 , v1 =

−2
2
1

 and v2 =

1
1
0

 .

1. Check that v1 and v2 are eigenvectors of A.

2. Orthogonally diagonalize the matrix A. (Hint: Make use of the fact that you already know
two eigenvectors instead of just using the standard recipe for orthogonal diagonalization!)

Solution:

1. We have Av1 = 10v1 and Av2 = v2, so v1 and v2 are indeed eigenvectors of A.

2. Since A is symmetric it is diagonalisable. Moreover there is an (orthogonal) matrix P
such as A = PDP T . Being eigenvectors for different eigenvalues of a symmetric matrix,
we know without calculation that v1 and v2 are two orthogonal eigenvectors. The third
eigenvector has to be orthogonal to the two first ones. As we are in R3, the space which is

orthogonal to v1 and v2 has dimension 1. All we have to do is to find a vector v3 =

x
y
z


such as v1 · v3 = 0 et v2 · v3 = 0. We then solve :

(
−2 2 1
1 1 0

) x
y
z

 =

(
0
0

)

The system has one free variable so we can write the solution as : v3 = z

 1/4
−1/4
1


We then check that Av3 = λ3v3 with λ3 = 1. Finally, we need to normalize the three
eigenvectors to obtain

Q =

−2/3 1/
√
2 1/

√
18

2/3 1/
√
2 −1/

√
18

1/3 0 4/
√
18

 , D =

10 0 0
0 1 0
0 0 1

 ,

which allow us to write A = QDQT .



Ex 14.3 (Computing an SVD)
Find a singular value decomposition of each of the following matrices:

A =

(
3 2 2
2 3 −2

)
, B =

(
2 −1
2 2

)
and C =

 1 1
0 1
−1 1

 .

Solution:

Recall the recipe: that: A singular value decomposition of a rank r matrix is a product A =

U Σ V T , where matrix Σ is “diagonal” and contains the r singular values s1, s2, . . . , sr of A.
They are the square roots of the non-zero eigenvalues of ATA and we list them in a decreasing
order. The matrix V is made from the orthonormalized eigenvectors of the symmetric matrix
ATA : V = [v1v2 . . .].
Finally the matrix U = [u1u2 . . .] is such that ui =

1
si
Avi for all 1 ≤ i ≤ r, and the remaining

vectors ur+1, ..., um (if necessary) can be found by completing the u1, . . . , ur to an orthonormal
basis for Rm.

SVD for A: We have ATA =

13 12 2
12 13 −2
2 −2 8

. The characteristic polynomial is given by

det(λI − ATA) = λ3 − 34λ2 + 225λ.

We see directly that 0 is an eigenvalue. Diving by λ, we have a polynomial of degree two and the
corresponding eigenvalues are 9 and 25. We arranged them in decreasing order: λ1 = 25, λ2 =
9, λ3 = 0. Since there are three distinct eigenvalues, the eigenspaces are one-dimensional and
orthogonal. We find them by the usual row reduction. After normalizing, they are as follows:

v1 =

 1√
2
1√
2

0

 , v2 =

− 1√
18

1√
18

− 4√
18

 , v3 =

−2
3

2
3
1
3


(Since in this problem, each eigenspace is one dimensional, your v1, v2, v3 must be exactly the
above ones up to reversing direction.)

Since λ1 and λ2 are > 0 but λ3 = 0, we have that r = 2 and σ1 = 5 and σ2 = 3. This already
gives us the matrix Σ ∈ R2×3.

To compute U , we only need to compute the vectors Av1 and Av2 (they are orthogonal by
Lemma 7.3) and normalize. This gives u1, u2.

u1 =

(
1√
2
1√
2

)
, u2 =

(
− 1√

2
1√
2

)
Since here r = m = 2, the {u1, u2} is already a basis of Rm = R2, so no basis expansion is
required. U = (u1, u2) ∈ R2×2.

So in conclusion: A =

(
1√
2

− 1√
2

1√
2

1√
2

)(
5 0 0
0 3 0

) 1√
2

1√
2

0

− 1
3
√
2

1
3
√
2

− 4
3
√
2

−2
3

2
3

1
3

 .



SVD for B: BTB has the eigenvalues 9 and 4. With the same strategy as for A we find that

B =

(
1√
5

− 2√
5

2√
5

1√
5

)(
3 0
0 2

)( 2√
5

1√
5

− 1√
5

2√
5

)
.

SVD for C: CTC has the eigenvalues 3 and 2, so

C =


1√
3

1√
2

1√
6

1√
3

0 − 2√
6

1√
3

− 1√
2

1√
6


√

3 0

0
√
2

0 0

(0 1
1 0

)
.

Here the last column of U is found as a vector of unit length that is orthogonal to the first two
columns (solve the corresponding linear system, then normalize).

Ex 14.4 (SVD with higher geometric multiplicity)
Find a singular value decomposition of the following matrix:

A =


1 0 0 0 0
0 5 0 0 0
0 0 3 −4 0
0 0 0 0 0

 .

Solution:

Firstly, compute

ATA =


1 0 0 0 0
0 25 0 0 0
0 0 9 −12 0
0 0 −12 16 0
0 0 0 0 0


for which it has the characteristic polynomial

χATA(λ) = (λ− 25)2(λ− 1)λ2.

Thus, ATA has eigenvalues 25, 1 and 0 of which the eigenvalues 25 and 0 has algebraic and
geometric multiplicity of 2. Namely, if A has SVD UΣV T , then

Σ =


5 0 0 0 0
0 5 0 0 0
0 0 1 0 0
0 0 0 0 0

 .

Now, the eigenvectors of ATA are (depending on your method you might find different eigen-
vectors!):

• Eigenvalue 25: ṽ1 = e2 and ṽ2 = 2e2 − 3e3 + 4e4,

• Eigenvalue 1: v3 = e1,

• Eigenvalue 0: v4 = 4e3 + 3e4 and v5 = e5.



Note that at this point, we cannot directly input the normalized version of these vectors into
the matrix V since the vectors corresponding to the eigenvalue 25 are not yet orthogonal. Thus,
to make them orthogonal, we apply the Gram-Schmidt procedure to ṽ1 and ṽ2 which gives us

v1 =


0
1
0
0
0

 , and v2 =


0
0
3
−4
0

 .

Now, by normalizing these vectors and setting them into V , we have

V =


0 0 1 0 0
1 0 0 0 0
0 3

5
0 4

5
0

0 −4
5

0 3
5

0
0 0 0 0 1

 .

Finally, to find U , we compute ũi = Avi for i = 1, 2, 3:

ũ1 =


0
5
0
0

 , ũ2 =


0
0
25
0

 , ũ3 =


1
0
0
0

 .

Normalizing,

u1 =


0
1
0
0

 , u2 =


0
0
1
0

 , u3 =


1
0
0
0

 .

Hence, completing the ONB with u4 = e4,

U =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


In conclusion, the following is an SVD for A

A = UΣV T =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1



5 0 0 0 0
0 5 0 0 0
0 0 1 0 0
0 0 0 0 0



0 0 1 0 0
1 0 0 0 0
0 3

5
0 4

5
0

0 −4
5

0 3
5

0
0 0 0 0 1


T

.

Ex 14.5 (A proof using SVD)
We say that two matrices A,B ∈ Rn×n are called orthogonally similar if there exists an orthog-
onal matrix Q ∈ Rn×n such that A = QBQT . Let A ∈ Rn×n. Show that ATA and AAT are
orthogonally similar.

Hint: Use a SVD of A and that the product of orthogonal matrices is orthogonal.

You do not need to memorize the definition of orthogonally similar for the exam. This exercise
is just for your to train your proof-writing within the topics of Section 7.



Solution:

Let us write A = UΣV T in the form of a SVD. Since A is square, the matrix Σ is square, too
and therefore a diagonal matrix. Hence AT = V ΣTUT = V ΣUT . Thus we can compute

ATA = V ΣUTUΣV T = V Σ2V T , AAT = UΣV TV ΣUT = UΣ2UT .

This implies that

ATA = V Σ2V T = V UTAATUV T = V UTAAT (V UT )T ,

so the claim follows upon setting Q = V UT .

Ex 14.6 (Computing SVD from eigenvectors)

Let A ∈ R2×4, w1, w2 ∈ R4 be such that w1, w2 are eigenvectors of ATA, and

w1 =


1
−1
0
0

 , w2 =


1
1
1
0

 , Aw1 =

(
2
−1

)
, Aw2 =

(
1
2

)
.

Find matrices U,Σ and V such that A has singular value decomposition of the form

A = UΣV T .

Solution:

Sizes of the matrices: We observe that wi for i = 1, 2 are vectors in R4 and the product Awi is
well-defined. Hence, A must have four 4 columns.
Moreover, since Awi for i = 1, 2 are vectors in R2, we know that A has 2 rows. Therefore,
A ∈ R2×4. This implies that Σ ∈ R2×4, U ∈ R2×2 and V ∈ R4×4.

We first compute Σ ∈ R2×4: We observe that w1 · w2 = 0, and that ∥w1∥ =
√
2, ∥w2∥ =

√
3.

Since wi ∈ R4 for i = 1, 2 are not normalized eigenvectors of ATA, first define

v1 =
w1

∥w1∥
=


1/
√
2

−1/
√
2

0
0

 et v2 =
w2

∥w2∥
=


1/
√
3

1/
√
3

1/
√
3

0

 .

We conclude that vi ∈ R4 for i = 1, 2 are normalized eigenvectors of ATA. Moreover,

∥Av1∥ =

∥∥∥∥ Aw1

∥w1∥

∥∥∥∥ =
1√
2
∥Aw1∥ =

√
5√
2
,

∥Av2∥ =

∥∥∥∥ Aw2

∥w2∥

∥∥∥∥ =
1√
3
∥Aw2∥ =

√
5√
3
.

In consequence, the singular values of A are, σ1 =
√
5/
√
2 and σ2 =

√
5/
√
3. We made sure

that σ1 > σ2 (descending order), and hence

Σ =

(
σ1 0 0 0
0 σ2 0 0

)
=

(√
5/
√
2 0 0 0

0
√
5/
√
3 0 0

)
.

Let us now compute V ∈ R4×4: The first two columns of V are the normalized versions of v1
and v2. The other two columns are the eigenvectors of ATA for the eigenvalue 0.



To find the other two columns v3, v4 of V , it suffices to expand {v1, v2} to an orthonormal basis
{v1, v2, v3, v4} of R4.
Why is that a good strategy here? There are two ways to understand this:
1.) following our recipe from class, the missing two columns of V are the eigenvectors of ATA
for the eigenvalue 0. They are orthogonal to v1 and v2 as ATA is symmetric. So if we find two
orthogonal vectors that are orthogonal to v1, v2, then they must be eigenvectors for 0.
2.) Look at the product UΣV T . Since Σ has all zeros in the last two columns, the last two
rows of V T (which are the last two columns of V ) will not matter in the product. So we can
choose them to be whatever as long as V is an orthogonal matrix.

So let us now find v3, v4, so that {v1, v2, v3, v4} is an orthonormal basis of R4: There are various
ways to achieve this; see e.g. the example at the end of the lecture notes of Week 13. Depending
on the approach that you choose, your solution for v3, v4 might look slightly different than the
one presented here, which is totally fine.
The strategy we use here, is finding a basis for the orthogonal complement of Span v2, v2 an
orthonormalizing it. To find the orthogonal complement of Span v2, v2, we compute the kernel
of the matrix

(w1w2)
T =

(
1 −1 0 0
1 1 1 0

)
,

Its reduced echelon form is:(
1 −1 0 0
1 1 1 0

)
L2←L2−L1−→

(
1 −1 0 0
0 2 1 0

)
L2← 1

2
L2−→
(
1 −1 0 0
0 1 1/2 0

)
L1←L1+L2−→

(
1 0 1/2 0
0 1 1/2 0

)
.

And we get that

Ker

(
1 −1 0 0
1 1 1 0

)
= Ker

(
1 0 1/2 0
0 1 1/2 0

)
=



x1

x2

x3

x4

 : x1 = x2 = −x3/2


=

x3


−1/2
−1/2
1
0

+ x4


0
0
0
1

 : x3, x4 ∈ R

 =



−1/2
−1/2
1
0

 ,


0
0
0
1


 =




1
1
−2
0

 ,


0
0
0
1


,

So, a basis of that kernel and hence of the orthogonal complement of Span{v1, v2} is


1
1
−2
0

 ,


0
0
0
1




We observe that this basis is already orthogonal. Hence, we only need to normalize and obtain

v3 =


1/
√
6

1/
√
6

−2/
√
6

0

 et v4 =


0
0
0
1

 .

Hence, {v1, v2, v3, v4} is an orthonormal basis of R4. And we can define the orhogonal matrix

V = (v1 v2 v3 v4) =


1√
2

1√
3

1√
6

0

− 1√
2

1√
3

1√
6

0

0 1√
3

− 2√
6

0

0 0 0 1

 .



Finally, we compute the matrix U ∈ R2×2: We first observe that r = 2, since A has two singular
values). So the first two columns of U are the normalized versions of Av1 and Av2. But U only
has two columns, so we already have all of them.
So, let us normalize Av1 and Av2:

ui =
Avi
∥Avi∥

=
Avi
σi

u1 =
Av1
σ1

=
Aw1

σ1∥w1∥
=

1√
5

(
2
−1

)
=

(
2/
√
5

−1/
√
5

)
,

u2 =
Av2
σ2

=
Aw2

σ2∥w2∥
=

1√
5

(
1
2

)
=

(
1/
√
5

2/
√
5

)
.

Hence,

U = (u1 u2) =

(
2√
5

1√
5

−1√
5

2√
5

)
.

Finally, we have:

A = UΣV T =

(
2√
5

1√
5

− 1√
5

2√
5

)√5
2

0 0 0

0
√

5
3

0 0




1√
2

1√
3

1√
6

0

− 1√
2

1√
3

1√
6

0

0 1√
3

− 2√
6

0

0 0 0 1


T

.

Ex 14.7 (Calculating exp(tA) and solving ODEs)

Let A =

(
2 1
1 2

)
. (a) Compute exp(tA). (Hint: Diagonalize A.)

b) Solve the differential equation x′(t) = A · x(t) for each of the initial values:

(i) x(0) =

(
−1
1

)
, (ii) x(0) =

(
4
2

)
.

Solution:

a) The characteristic polynomial of A is

(t− 2)2 − 1 = t2 − 4t+ 3 = (t− 1)(t− 3),

so the eigenvalues are λ1 = 1 and λ2 = 3. Solving Ax− I = 0 and Ax− 3I = 0, we see that

the v1 =

(
1
−1

)
is an eigenvector with eigenvalue 1 and v2 =

(
1
1

)
is an eigenvector with

eigenvalue 3. Hence A can be diagonalized as A = PDP−1, where

P =

(
1 1
−1 1

)
and D =

(
1 0
0 3

)
with P−1 =

1

2

(
1 −1
1 1

)
.

Hence, as seen in the lecture,

exp(tA) = exp(tPDP−1) = P exp(tD)P−1 =

(
1 1
−1 1

)(
et 0
0 e3t

)
1

2

(
1 −1
1 1

)
=

1

2

(
et + e3t e3t − et

e3t − et et + e3t

)
.



b) Recall that every solution of x′(t) = A · x(t) satisfies x(t) = exp(tA) · x(0), meaning that we
have the following solutions.

i)

x(t) =
1

2

(
exp(t) + exp(3t) exp(3t)− exp(t)
exp(3t)− exp(t) exp(t) + exp(3t)

)(
−1
1

)
=

(
− exp(t)
exp(t)

)
.

ii)

x(t) =
1

2

(
exp(t) + exp(3t) exp(3t)− exp(t)
exp(3t)− exp(t) exp(t) + exp(3t)

)(
4
2

)
=

(
exp(t) + 3 exp(3t)
3 exp(3t)− exp(t)

)
.

Ex 14.8 (Solving ODEs)
Solve the following system of differential equations :

x′1(t) = 5x1(t)− 4x2(t)− 2x3(t)
x′2(t) = −4x1(t) + 5x2(t) + 2x3(t)
x′3(t) = −2x1(t) + 2x2(t) + 2x3(t)

for the initial values x1(0) = 0, x2(0) = 0, x3(0) = 1

Hint: transfer it into a suitable matrix form. Then before your start investing loads of time
into computations, ask yourself whether the matrix looks familiar to you.

Solution: Transferring this system into matrix form yields 5 −4 −2
−4 5 2
−2 2 2

x1(t)
x2(t)
x3(t)

 =

x′1(t)
x′2(t)
x′3(t)


Notice that for this matrix we have already found a diagonlization in Exercise 14.2. (The fact
that it is an orthogonal diagonalization instead of just any diagonalization does not make things
better or worse here.) Namely, A = QDQ−1 where Q and D are as in the solution of Exercise
14.3 and Q−1 = QT . Hence

exp(tA) = Q exp(tD)QT

=

−2/3 1/
√
2 1/

√
18

2/3 1/
√
2 −1/

√
18

1/3 0 4/
√
18

et10 0 0
0 et 0
0 0 et

−2/3 1/
√
2 1/

√
18

2/3 1/
√
2 −1/

√
18

1/3 0 4/
√
18

T

=

 1
9
(4e10t + 5et) 1

9
(−4e10t + 4et) 2

9
(−e10t + et)

1
9
(−4e10t + 4et) 1

9
(4e10t + 5et) 1

9
(2e10t − 2et)

1
9
(−2e10

t
+ 2et) 1

9
(2e10

t − 2et) 1
9
(e10t + 8et)


and solutions for our system of linear equations are of the form

exp(tA)

c1
c2
c3

 for parameters c1, c2, c3 ∈ R.

Solving

exp(0 · A)

c1
c2
c3

 =

0
0
1





for c1, c2, c3 yields c1 = 0, c2 = 0, c3 = 1 In conclusion, the solution for Ex.14.7(a) isx1(t)
x2(t)
x3(t)

 = exp(tA)

c1
c2
c3


=

 1
9
(4e10t + 5et) 1

9
(−4e10t + 4et) 2

9
(−e10t + et)

1
9
(−4e10t + 4et) 1

9
(4e10t + 5et) 1

9
(2e10t − 2et)

1
9
(−2e10

t
+ 2et) 1

9
(2e10

t − 2et) 1
9
(e10t + 8et)

0
0
1


=

 2
9
(−e10t + et)

1
9
(2e10t − 2et)
1
9
(e10t + 8et)

 .

Ex 14.9 (A higher order ODE)

Consider the following differential equation: y′′′(t) + 4y′′(t)− 4y′(t) = 0

(a) Transform this ODE of order n into a system of ODEs of order 1 and write it in matrix-
vector-form.

(b) Compute exp(tA) for t ∈ R.

(c) Using the method of matrix exponentials, compute a solution y(t) for the differential
equation for the initial values: y′′(0) = y′(0) = 0 and y(0) = 1?

Solution: (Straightaway, we see that the constant solution y(t) = 1 satisfy the SDE. However,
for practice, let us try the method involving matrix exponentials and see if we obtain the same
solution.)
(a) We set x1(t)

x2(t)
x3(t)

 :=

 y(t)
y′(t)
y′′(t)


Then y′′′(t) + 4y′′(t)− 4y′(t) = 0 becomes

(∗)

0 1 0
0 0 1
0 4 −4

x1(t)
x2(t)
x3(t)

 =

x′1(t)
x′2(t)
x′3(t)


Let us call the matrix in this equation A.

(b) Diagonalizing A as usual gives:

A = SDS−1 =

1 3 + 2
√
2 3− 2

√
2

0 2 + 2
√
2 −2

√
2 + 2

0 4 4

0 0 0

0 2
√
2− 2 0

0 0 −2− 2
√
2


1 −1 −1

4

0 1
4
√
2

−1−
√
2

8
√
2

0 − 1
4
√
2

2+
√
2

16


Hence

exp(tA) = S exp(tD)S−1

=

1 3 + 2
√
2 3− 2

√
2

0 2 + 2
√
2 −2

√
2 + 2

0 4 4

1 0 0

0 e(2
√
2−1)t 0

0 0 e−2(1+
√
2)t


1 −1 −1

4

0 1
4
√
2

−1−
√
2

8
√
2

0 − 1
4
√
2

2+
√
2

16





(Technically, since the problem says ”Compute exp(tA)”, you we are asked to simplify, i.e.
compute the threefold matrix product. But as it is quite lengthy and not very enlightening, let
us skip writing it out here.)

(c) The solution of (∗) for the initial valuex1(0)
x2(0)
x3(0)

 =

1
0
0


isx1(t)

x2(t)
x3(t)

 = S exp(tD)S−1

1
0
0


=

1 3 + 2
√
2 3− 2

√
2

0 2 + 2
√
2 −2

√
2 + 2

0 4 4

1 0 0

0 e(2
√
2−1)t 0

0 0 e−2(1+
√
2)t


1 −1 −1

4

0 1
4
√
2

−1−
√
2

8
√
2

0 − 1
4
√
2

2+
√
2

16


1
0
0


=

1
0
0


(If you compute the above matrix product starting from right to left, then it is actually a short
computation!!)

Hence y(t) = x1(t) = 1 is the solution of y′′′(t) − 4y′′(t) + 4y′(t) = 0 for the initial values
y′′(0) = y′(0) = 0, y(0) = 1.

Ex 14.10 (exp(tA) for a non-diagonalizable matrix)

Let A =

(
1 1
0 1

)
. a) Show that A is not diagonalizable.

b) Show by induction that An =

(
1 n
0 1

)
.

c)∗ Non-mandatory exercise. Show that exp(tA) =

(
et tet

0 et

)
.

You may use the formula exp(x) =
∑∞

n=0
xn

n!

Solution:

a) A being an upper triangular matrix, we see that its only eigenvalue is 1, but the corresponding
eigenspace cannot be two-dimensional since otherwise the matrix A− I2 has to be zero matrix.
Hence A is not diagonalizable.

b) For n = 0 the statement holds since A0 := I2. Now suppose it holds for n − 1 for n ≥ 1.
Then

An = AAn−1 =

(
1 1
0 1

)(
1 (n− 1)
0 1

)
=

(
1 n
0 1

)
.

c) By part b) and the definition of the exponential series we have

exp(tA) =
∞∑
n=0

tnAn

n!
=
∞∑
n=0

tn
(
1 n
0 1

)
n!

=

∑∞n=0
tn

n!

∑∞
n=0

tnn
n!

0
∑∞

n=0
tn

n!

 =

et
∑∞

n=0
tnn
n!

0 et

 .



There we only have to identify the entry at position (1, 2). It holds that

∞∑
n=0

tnn

n!
=
∞∑
n=1

ttn−1

(n− 1)!
= t

∞∑
n=1

tn−1

(n− 1)!
k=n−1
= t

∞∑
k=0

tk

k!
= tet.

Remark: This shows that the solution of the ODE system x′1 = x1 + x2 and x′2 = x2 with initial

values x1(0) = 0 and x2(0) = 1 is given by x1(t) = tet and x2(t) = et, so that it is no pure linear

combination of exponential functions.

Ex 14.11 (Diagonalization of a matrix exponential)
Let A be the matrix from Exercise 11.2 (see Homework 11). Diagonalize exp(tA) for t ∈ R.

Solution: From the solution of Exercise 11.2: A = PDP−1 where

D =

1 0 0
0 2 0
0 0 2

 , P =

 0 0 −1
−1 1 0
1 0 1


So we can compute

P−1 =

 1 0 1
1 1 −1
−1 0 0


Moreover, by Theorem 7.9: exp(tA) = P exp(tD)P−1 So

exp(tA) =

 0 0 −1
−1 1 0
1 0 1

et 0 0
0 e2t 0
0 0 e2t

 1 0 1
1 1 −1
−1 0 0


Since we were asked to diagonalize exp(tA) (as opposed to computing it) we do not have to
further simplify.

Ex 14.12 (Multiple choice and True/False questions)

a) Consider the matrices A =

(
−7/4 1/2
1/2 3/5

)
and B =

(
1 3
2 4

)
.

Which among the following statements are true?

(A) A and B are orthogonally diagonalizable

(B) A is orthogonally diagonalizable and B is diagonalizable

(C) A is diagonalizable but B is not.

(D) neither A nor B are orthogonally diagonalizable.

b) Decide whether the following statements are always true or if they can be false.

(i) If A = AT and Ax = 0 and Ay = y, then x · y = 0.

(ii) If A = AT , then A has n distinct real eigenvalues.

(iii) An orthogonal matrix is orthogonally diagonalizable.

(iv) If A ∈ Rm×n and if P ∈ Rm×m is orthogonal, then A and PA have the same singular
values.

(v) If A ∈ Rn×n, then A and ATA have the same singular values.



(vi) If A is orthogonally diagonalizable, then exp(tA) is orthogonally diagonalizable.

Solution:
a) (B): The matrix A is symmetric, so it is orthogonally diagonalizable, while a quick calculation
shows that B has two distinct eigenvalues, so it is diagonalizable.
As a consequence, (C) and (D) are false. (A) is also false because B is not symmetric, hence
it cannot be orthogonally diagonalizable.

b) True/false

(i) TRUE: If either x = 0 or y = 0, then the orthogonality is clear. Otherwise they are
eigenvectors for the two eigenvalues 0 and 1, so they are orthogonal since A is symmetric.

(ii) FALSE: Take A = In, which is symmetric and has only the eigenvalue 1.

(iii) FALSE: It suffices to find an orthogonal matrix that is not symmetric. Take for instance

Q =

(
1/
√
2 −1/

√
2

1/
√
2 1/

√
2

)
(iv) TRUE: Recall that the singular values of A are the eigenvalues of ATA. When P is

orthogonal, we have (PA)T (PA) = ATP TPA = ATA.

(v) FALSE: Consider A =

(
2 0
0 2

)
. Then ATA = A2 has the eigenvalue 4, so that A has

the singular value 2, while (ATA)TATA = A4 has the eigenvalue 16, so that ATA has the
singular value 4.

(vi) TRUE If A is orthogonally diagonalizable, this means that A = PDP−1 where D is
diagonal and P is orthogonal. By Thm.7.9, it follows that exp(tA) = P exp(tD)P−1

and by Lemma 7.8 exp(tD) is diagonal. Hence this is an orthogonal diagonalization of
exp(tA).


