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SOLUTIONS for Homework 14

Ex 14.1 (Orthogonal diagonalization) 4 -3 0 0
: . . 9 =2 -3 12 0 0

Orthogonally diagonalize the matrices A = (_ 9 6 ) and B = 0 0 4 -3
0o 0 -3 12

Solution: Solution for A: The characteristic polynomial of A is

xa(A) =50 — 15X + A% = (A — 10)(A — 5).
Its roots and hence the eigenvalues of A are A\ = 10, Ay = 5.
By solving (101 — A)v = 0, we find the eigenvector (_21> for A\; = 10;

1
2

As A is symmetric, and vy,v9 are eigenvectors for different eigenvalues, we know that they are
already orthogonal. So we only need to normalize them:

2 1
_ 1 1 1
Uy = i = B ( 1) and ug 1= % (2)

1 1 2 B T 1 1 2 5 0 1 1 2
SetU—ﬁ(2 1 and hence A = UDU =7l s 4 0 10 vACES! )

(Observe that by coincidence, U is symmetric in this exercise.)

by solving (51, — A)v = 0, we find the eigenvector and ( > for \y = 5.

Solution for B: The characteristic polynomial of B is

xB(A) = Xt — 3203 4 33407 — 1248) 4 1521 = (A\? — 16X + 39)% = (=13 + \)* (=3 + \)2

(It’s ok if you used your calculator to find the roots for this one.) So B has two eigenvalues
13 and 3. Each has algebraic multiplicity 2, so we write \y = Ay = 13, A3 = Ay = 3. Since B
is symmetric, each eigenvalue must also have geometric multiplicity = 2, i.e., each eigenvalue
must have two independent eigenvectors. Find them by solving the equation (131, — B)v =0
respectively (31, — B)v = 0, or, by clever guessing. This yields eigenvectors v; = (—1,3,0,0)7
and vy = (0,0, —1,3)T for 13; and v3 = (0,0,3,1)T and vy = (3,1,0,0)T for 3. (Depending on
how you solved the system, your vectors might look slightly different.)

Since B is symmetric, we know: every eigenvector of 13 is orthogonal to every eigenvector of
3. Hence, we only need to check orthogonality within {v;, v} and within {v3,v4}. And in fact,
we can easily compute that vy - vo = 0 and vs - vy = 0.

(If that were not the case (e.g. if you found different eigenvectors), the orthogonalize by using

Gram Schmidt, see example (*) below.)
1
Tfwill

Hence {v1, vy, v3,v4} is an orthogonal eigenbasis for B. Normalizing u; := v; yields the



following orthonormal eigenbasis of B: u; = (%,%,O,O)T, Uy = (O,O,J—li,\/iro)T, Uy =

0
0,0, 2, )T uy = (%, 110,0,0)T. Hence

V10’ V1o NATRRVAT)
—1 3
@0 0@ 13 0 0 0
U= \/OTO s JST) , D= 8 103 gg and A=UDUT
o Vo 0 0 0 3
0 75 v Y

(x) For example, the eigenvectors of 13 that you have found might be vy = (—=1,3,—1,3)T and
vo = (0,0,—1,3)T. In this case, they are not orthogonal (v x vy # 0). Applying Gram-Schmidt
to {vi,ve} yields uy = vy = (=1,3,—1,3)T, uy = (%,—%,—%,%). Then proceed normalizing
them and continue as above.

In particular, there are many different possibilities for U, depending on which vy, v, v3, vy that
you started with. But there is only one solution for D (up to reordering the diagonal elements).
You can easily verify whether the U that you found is correct by just computing UDUT and

checking whether the columns of your U are orthonormal.

Ex 14.2 (Orthogonal diagonalization with some help)

Consider
5 —4 -2 -2 1
A=|—-4 5 2|, vi=| 2 and vy =1
-2 2 2 1 0

1. Check that v; and vy are eigenvectors of A.

2. Orthogonally diagonalize the matrix A. (Hint: Make use of the fact that you already know
two eigenvectors instead of just using the standard recipe for orthogonal diagonalization!)

Solution:

1. We have Av; = 10v; and Avs = w9, so v; and v, are indeed eigenvectors of A.

2. Since A is symmetric it is diagonalisable. Moreover there is an (orthogonal) matrix P
such as A = PDP”. Being eigenvectors for different eigenvalues of a symmetric matrix,
we know without calculation that v; and vy are two orthogonal eigenvectors. The third

eigenvector has to be orthogonal to the two first ones. As we are in R?, the space which is
x

orthogonal to v; and vy has dimension 1. All we have to do is to find a vector v3 = [ y
z

x
such as vy - v3 = 0 et vy - v3 = 0. We then solve : (_2 2 1> y| = (0)
z

1 10 0
1/4
The system has one free variable so we can write the solution as : v3 =z [ —1/4
1

We then check that Avs = Azvs with A3 = 1. Finally, we need to normalize the three
eigenvectors to obtain

-2/3 1/v/2 1/V18 10
Q=1 2/3 1/vV2 -1/V/18|, D=0
1/3 0  4/V18 0

which allow us to write A = QDQT.

O = O



Ex 14.3 (Computing an SVD)
Find a singular value decomposition of each of the following matrices:

1 1
3 2 2 2 —1
A—(2 5 _2>, B—<2 2) and C = _011

Solution:

Recall the recipe: that: A singular value decomposition of a rank r matrix is a product A =
U Y VT, where matrix ¥ is “diagonal” and contains the r singular values si, So, ..., s, of A.
They are the square roots of the non-zero eigenvalues of AT A and we list them in a decreasing
order. The matrix V' is made from the orthonormalized eigenvectors of the symmetric matrix
ATA: V = [vvy.. .

Finally the matrix U = [ujuy.. .| is such that u; = S%Avi for all 1 < i < r, and the remaining
vectors Uy 1, ..., Uy, (if necessary) can be found by completing the wy, ..., u, to an orthonormal
basis for R™.

13 12 2
SVD for A: We have ATA= |12 13 —2|. The characteristic polynomial is given by
2 -2 8

det(A — ATA) = \* — 34\ + 225

We see directly that 0 is an eigenvalue. Diving by A\, we have a polynomial of degree two and the
corresponding eigenvalues are 9 and 25. We arranged them in decreasing order: A\ = 25, Ay =
9, A3 = 0. Since there are three distinct eigenvalues, the eigenspaces are one-dimensional and
orthogonal. We find them by the usual row reduction. After normalizing, they are as follows:

L —— 2
V2 Y18 3
n=1|% v=| 7 vs=| 3
vl i | i
0 ~E 3

(Since in this problem, each eigenspace is one dimensional, your vy, vy, v3 must be exactly the
above ones up to reversing direction.)

Since Ay and Ay are > 0 but A3 = 0, we have that » = 2 and 0; = 5 and o9 = 3. This already
gives us the matrix ¥ € R?*3,

To compute U, we only need to compute the vectors Av; and Awvy (they are orthogonal by
Lemma 7.3) and normalize. This gives uy, us.

1 _ 1
w= ], = 7
V2 V2

Since here 1 = m = 2, the {u,us} is already a basis of R™ = R?  so no basis expansion is
required. U = (uy,uy) € R**2,

1 1
—= —= 0
L L V22
So in conclusion: A = \{5 1\/5 (8 g 8) — = 3% _ﬁi
VARG R S |
3 3 3



SVD for B: BT B has the eigenvalues 9 and 4. With the same strategy as for A we find that

12 30 2 L

2 L 0 2 -1 2 /-

Vs VB V5 VB
SVD for C: CTC has the eigenvalues 3 and 2, so

1 1
U NG A N

0:750_76‘ O\/ﬁ(lo).
A4 11 0 0

V3

Here the last column of U is found as a vector of unit length that is orthogonal to the first two
columns (solve the corresponding linear system, then normalize).

Ex 14.4 (SVD with higher geometric multiplicity)
Find a singular value decomposition of the following matrix:

100 0 O
050 0 0
A= 003 —40
000 0 O
Solution:
Firstly, compute
10 0 0 O
0 25 0 0 O
ATA=10 0 9 -12 0
0 0 =12 16 O
0 0 O 0 O

for which it has the characteristic polynomial
Xara(A) = (A= 25)%(A — 1)A™.

Thus, AT A has eigenvalues 25,1 and 0 of which the eigenvalues 25 and 0 has algebraic and
geometric multiplicity of 2. Namely, if A has SVD UXV7?, then

50000
05000
Z700100
00 00O

Now, the eigenvectors of AT A are (depending on your method you might find different eigen-
vectors!):

e Eigenvalue 25: U3 = ey and U9 = 2e5 — 3eg + 4ey,
e Eigenvalue 1: v3 = ey,

e Eigenvalue 0: vy = 4e3 4 3e4 and v; = e5.



Note that at this point, we cannot directly input the normalized version of these vectors into
the matrix V' since the vectors corresponding to the eigenvalue 25 are not yet orthogonal. Thus,
to make them orthogonal, we apply the Gram-Schmidt procedure to ©; and ¥, which gives us

0 0
1 0
vu=10|,andvy=1] 3
0 —4
0 0

Now, by normalizing these vectors and setting them into V', we have

0 0 100
1 0 000

— 3 4

v=]o § 020
0 -2 0 20
00 001

Finally, to find U, we compute u; = Av; for i = 1,2, 3:

0 0 1
- 151 - O - 10
Uy = 0 , Ug = 25 , U3 = 0
0 0 0
Normalizing,
0 0 1
|1 |0 0
Uy = 0 , U = 1 , U3 = 0
0 0 0
Hence, completing the ONB with uy = ey,
0010
1000
=lo 100
0001
In conclusion, the following is an SVD for A
T
0010 5 0 0 00 (1) 8 (1) 8 8
B r |1 000 05000 3 4
A_UEV_()lOO 00100 8_%838
5 5
0 0 01 00 00O 0 0 00 1

Ex 14.5 (A proof using SVD)

We say that two matrices A, B € R™*™ are called orthogonally similar if there exists an orthog-
onal matrix @ € R™" such that A = QBQT. Let A € R™". Show that ATA and AAT are
orthogonally similar.

Hint: Use a SVD of A and that the product of orthogonal matrices is orthogonal.

You do not need to memorize the definition of orthogonally similar for the exam. This exercise
is just for your to train your proof-writing within the topics of Section 7.



Solution:

Let us write A = UXV7 in the form of a SVD. Since A is square, the matrix ¥ is square, too
and therefore a diagonal matrix. Hence AT = VXTUT = VEU”. Thus we can compute

ATA=vyUuTusvT = vx?vT, AAT = UsvTyveuT = uxuT.
This implies that
ATA= VYV = VUTAATUVT = vUTAAT(VUT)T,
so the claim follows upon setting Q = VU?”.

Ex 14.6 (Computing SVD from eigenvectors)

Let A € R4 wy,wy € R* be such that w;, w, are eigenvectors of AT A, and

1 1

-1 1 2 1
w, = 0 , W9 = 1] Aw1 = (_1) s AU}Q = (2> .

0 0

Find matrices U, ¥ and V such that A has singular value decomposition of the form

A=UxVT,

Solution:

Sizes of the matrices: We observe that w; for ¢ = 1,2 are vectors in R* and the product Aw; is
well-defined. Hence, A must have four 4 columns.

Moreover, since Aw; for i = 1,2 are vectors in R?, we know that A has 2 rows. Therefore,
A € Ryyy. This implies that 3 € Royy, U € Royo and V' € Ryyy.

We first compute ¥ € Ry,y: We observe that wy - wy = 0, and that ||w,|| = v/2, ||ws = V/3.
Since w; € R* for i = 1,2 are not normalized eigenvectors of AT A, first define

1/v2 1/v3
wr —1/V2 ot oo — W2 _ 1/V/3
s 8 el 1/(;/§

V1 =

We conclude that v; € R* for i = 1,2 are normalized eigenvectors of AT A. Moreover,

| Av ||—HA““ _ L A = Y2
' VL VL
A’U)Q 1 \/5

Av = || Aw,|| = L=.

In consequence, the singular values of A are, o = V5 / V2 and oy = V5 / V3. We made sure
that o1 > 09 (descending order), and hence

E:(%l 0 S)Z(ﬁéﬂ GIVE 0 8)-

Let us now compute V € R**4: The first two columns of V are the normalized versions of v,
and v,. The other two columns are the eigenvectors of AT A for the eigenvalue 0.




To find the other two columns v, vy of V| it suffices to expand {vy,v9} to an orthonormal basis
{Ul, V2, V3, U4} of R4.

Why is that a good strategy here? There are two ways to understand this:

1.) following our recipe from class, the missing two columns of V are the eigenvectors of AT A
for the eigenvalue 0. They are orthogonal to v; and vy as AT A is symmetric. So if we find two
orthogonal vectors that are orthogonal to vy, v, then they must be eigenvectors for 0.

2.) Look at the product UXVT. Since ¥ has all zeros in the last two columns, the last two
rows of VT (which are the last two columns of V') will not matter in the product. So we can
choose them to be whatever as long as V' is an orthogonal matrix.

So let us now find vs, vy, so that {vy, va, v3,v4} is an orthonormal basis of R*: There are various
ways to achieve this; see e.g. the example at the end of the lecture notes of Week 13. Depending
on the approach that you choose, your solution for vs, v4 might look slightly different than the
one presented here, which is totally fine.

The strategy we use here, is finding a basis for the orthogonal complement of Spanwvsy, v an
orthonormalizing it. To find the orthogonal complement of Span vs, vy, we compute the kernel

of the matrix
r (1 =100
(wl w2) - (1 1 1 0 )
Its reduced echelon form is:

1 =1 0 0 LytLac-L 1 -1 00 inle 1 =1 0 0 LiLigLa 1 0 1/20
1 1 1 0 0 2 10 011/20 011/20‘

And we get that

T
1 -1 0 0\ _ 1 0 1/2 0 _ To | N
Ker(l 11 O>_Ker<0 1 1/2 0>_ vy | TS T2 T2
( \ 74
~1/2 0 —1/2 0 1 0
~1/2 0l B —1/2 0 B 1 0
Z3 1 + Ty 0 X3, T4 S R - 1 ) 0 - —9 ) 0 )
0 1 0 1 0 1

So, a basis of that kernel and hence of the orthogonal complement of Span{v;, ve} is

1 0
1 0
—21710
0 1

We observe that this basis is already orthogonal. Hence, we only need to normalize and obtain

1/1/6 0
1/v6

11 1
i
V:(U1U2U3U4): _75 75 V6



Finally, we compute the matrix U € R?*2: We first observe that r = 2, since A has two singular
values). So the first two columns of U are the normalized versions of Av; and Ave. But U only
has two columns, so we already have all of them.

So, let us normalize Av; and Aw,:

Ay Ay
R
UI_Avlz Aw, :L<2):<2N3>
or o lw 5 \—1 —1/V5)"
UQZAUQZ Aw, :L<1>: 1/\/3).
o o ||ws| 5 \2 2//5

Hence,

Finally, we have:

ot

1
=g 0
2N (2 o0 00 [A 2 ¥
A=Uusvi = V3 ¥ 2 NERRE wéo
)\ 0
1

Ex 14.7 (Calculating exp(tA) and solving ODEs)

2 1
1 2

b) Solve the differential equation z'(t) = A - z(t) for each of the initial values:

@)= (7). @) 0= (3).

Solution:

Let A = ( ) (a) Compute exp(tA). (Hint: Diagonalize A.)

a) The characteristic polynomial of A is
(t—2P2—1=t—4t+3=(t—1)(t—3),

so the eigenvalues are \; = 1 and Ay = 3. Solving Az — I = 0 and Ax — 31 = 0, we see that
1 is an eigenvector with
eigenvalue 3. Hence A can be diagonalized as A = PDP~!, where

(1 1 (1 0 . _1_1 1 -1
P_<—1 1) andD-(O 3) with P —§<1 1).

Hence, as seen in the lecture,

1\ . . : .
the v, = (_1) is an eigenvector with eigenvalue 1 and vy =

exp(tA) = exp(tPDP™') = Pexp(tD)P~" = ( 1 1) (Gt 0>

-1 1)\0 e
1 (et + et 3t — ot
= 5 <e3t — et et 4 €3t> .



b) Recall that every solution of 2/(t) = A - x(t) satisfies z(t) = exp(tA) - x(0), meaning that we
have the following solutions.
— exp(t)
exp(t) )

)
_ L (exp(t) + exp(3t) exp(3t) — exp(t)) (~1
o(t) = 2 (exp(3t) —exp(t) exp(t) +eXp(3t>) ( ! )

xp(3t) — exp(t)) (4) _ (exp(t) - Sexp(St)) .

exp(3t) —exp(t) exp(t) +exp(3t)/) \2 3exp(3t) — exp(t)

i)
(1) = % (exp(t) + exp(3t)

Ex 14.8 (Solving ODEs)
Solve the following system of differential equations :

2y (t) = bay(t) — dao(t) — 2x3(t)
h(t) = —2x1(t) + 2x2(t) + 223(¢)

for the initial values x1(0) = 0, 22(0) = 0, 23(0) =1

Hint: transfer it into a suitable matrix form. Then before your start investing loads of time
into computations, ask yourself whether the matrix looks familiar to you.

Solution: Transferring this system into matrix form yields

5 —4 =2 x1(t) x (1)
-4 5 2 zo(t) | = | 25(t)
-2 2 2 x3(t) zh(t)

Notice that for this matrix we have already found a diagonlization in Exercise 14.2. (The fact
that it is an orthogonal diagonalization instead of just any diagonalization does not make things
better or worse here.) Namely, A = QDQ~! where Q and D are as in the solution of Exercise
14.3 and Q' = Q7. Hence

exp(tA) = Qexp(tD)Q”

—2/3 1/v/2 1/VIS\ [ 0 0\ [/—2/3 1/vZ 1/VI8\
=1 2/3 1/vV/2 —1/V18 0 e 0 2/3 1/v/2 —1//18
/3 0  4/V/18 0 0 € 1/3 0  4/V18
5(4e'% 4 5et) %(—461(” +4e') 2 elOt +é)
(—4e' +det)  F(4e! 4 5ef)  5(2e'% — 2¢f)
(e

t t
(—2e' +2¢f)  5(2e' —2¢f) 3

O|—=QO|—=

"+ 8e')

and solutions for our system of linear equations are of the form

&1
exp(tA) | co for parameters ¢y, ca, c3 € R.
C3
Solving
C1 0
exp(0-A) [e2] =10
C3 1



for ¢1, o, c3 yields ¢; = 0,¢o = 0,¢3 = 1 In conclusion, the solution for Ex.14.7(a) is

x1(t) 1
2o(t) | = exp(tA) | o
z3(t) €8
%(4610t—|—56t) %(—4610t—l—4€t) %(_610t+6t) 0
_ é(_4€10:+4et) %(4610:+5€t) 5(2e —2¢h) | [0
g(=2e1 +2e")  5(2e —2e")  g(e! +8e") ) \1
= | 5(2e'%" —2¢")
%(610t+8€t)

Ex 14.9 (A higher order ODE)
Consider the following differential equation: y"”(t) + 4y"(t) — 4y'(t) = 0

(a) Transform this ODE of order n into a system of ODEs of order 1 and write it in matrix-
vector-form.

(b) Compute exp(tA) for ¢t € R.

(c) Using the method of matrix exponentials, compute a solution y(t) for the differential
equation for the initial values: y”(0) = ¢'(0) = 0 and y(0) = 17

Solution: (Straightaway, we see that the constant solution y(t) = 1 satisfy the SDE. However,
for practice, let us try the method involving matrix exponentials and see if we obtain the same

solution.)

@ We set
1 (t) y(t)
za(t) | == | ¥ (1)
z3(t) y" (1)

Then y"”(t) + 4y"(t) — 4y/(t) = 0 becomes

01 0 x1(t) ) (t)
(%) 00 1 xo(t) | = | xh(t)
0 4 —4/) \us(t) x4(t)

Let us call the matrix in this equation A.

(b) Diagonalizing A as usual gives:

1 3+2v2 3-2v2)\ (0 0 0 1 -1 _;11[
A=SDS™' =0 2+2v2 —2v2+2| [0 2v2-2 0 0 25 _18\%;
_9 _ 1 24+vV2

0 4 4 0 0 2-2v2/ \o —

Hence
exp(tA) = Sexp(tD)S™*

1 3+2v2 3-2v2)\ /1 0 0 1 -1 —if

=10 2+2v2 —2v2+2]| [0 V2 0 0 L -

0 4 4 0 0 e—2(1+V2)t 0 —_L 242




(Technically, since the problem says ”Compute exp(tA)”, you we are asked to simplify, i.e.
compute the threefold matrix product. But as it is quite lengthy and not very enlightening, let
us skip writing it out here.)

(¢) The solution of () for the initial value

is
x1(t) 1
1y(t) | = Sexp(tD)S™ |0
x3(t) 0
1 3+2v2 3-2v2)\ /1 O 0 1 -1 = 1
=0 2+2v2 —2v2+2] [0 @2t 0 0 L g
—2(1+V2)t 1 242
0 4 4 0 0 e 0 s - 0
1
=10
0

(If you compute the above matrix product starting from right to left, then it is actually a short
computation!!)

Hence y(t) = x1(t) = 1 is the solution of y"(t) — 4y"(t) + 4y'(t) = 0 for the initial values
y"(0) = y'(0) = 0,y(0) = 1.

Ex 14.10 (exp(tA) for a non-diagonalizable matrix)

Let A = <(1) D a) Show that A is not diagonalizable.
b) Show by induction that A" = <é 7;)
c)* Non-mandatory exercise. Show that exp(tA) = (%t tj).
You may use the formula exp(z) = Y o0 L

Solution:

a) A being an upper triangular matrix, we see that its only eigenvalue is 1, but the corresponding
eigenspace cannot be two-dimensional since otherwise the matrix A — I has to be zero matrix.
Hence A is not diagonalizable.

b) For n = 0 the statement holds since A° := I,. Now suppose it holds for n — 1 for n > 1.

Then
o) 56

c¢) By part b) and the definition of the exponential series we have

L[l n o n o  t"n o t'n
o g 2 (0 1) Yo Dm0 it e oo
n=0 n=0 0 Zn:O ] 0 et



There we only have to identify the entry at position (1,2). It holds that

Ootn 0 e 0 — Ootk’
Zon_? Zln—l Zn—l 1th_OH:t€t'

Remark: This shows that the solution of the ODE system zj = x; + 22 and a, = o with initial

values x1(0) = 0 and z2(0) = 1 is given by z1(t) = te! and zs(t) = €,

combination of exponential functions.

so that it is no pure linear

Ex 14.11 (Diagonalization of a matrix exponential)
Let A be the matrix from Exercise 11.2 (see Homework 11). Diagonalize exp(tA) for ¢t € R.

Solution: From the solution of Exercise 11.2: A = PDP~! where

1 00 0 0 —1
D=0 2 0|,P=|-11 0
0 0 2 1 0 1
So we can compute
1 0 1
Pt=11 1 -1
-1 0 0

Moreover, by Theorem 7.9: exp(tA) = Pexp(tD)P~! So

0 0 -1 e 0 0 1 0 1
exp(tA)=|—-1 1 0 0 € 0 1 1 -1
1 0 1 0 0 e -1 0 0

Since we were asked to diagonalize exp(tA) (as opposed to computing it) we do not have to
further simplify.

Ex 14.12 (Multiple choice and True/False questions)
: : (=74 1)2 (13
a) Consider the matrices A = ( 1/2 35 ) and B = ( 9 4 ) .
Which among the following statements are true?

(A
(B
(C
(D

) A and B are orthogonally diagonalizable

) A is orthogonally diagonalizable and B is diagonalizable
) A is diagonalizable but B is not.

) neither A nor B are orthogonally diagonalizable.

b) Decide whether the following statements are always true or if they can be false.
(i) If A= AT and Az = 0 and Ay =y, then z -y = 0.
(i) If A= AT, then A has n distinct real eigenvalues.
(iii) An orthogonal matrix is orthogonally diagonalizable.
)

(iv) If A € R™ and if P € R™*™ is orthogonal, then A and PA have the same singular
values.

(v) If A€ R™™ then A and AT A have the same singular values.



(vi) If A is orthogonally diagonalizable, then exp(tA) is orthogonally diagonalizable.

Solution:

a) (B): The matrix A is symmetric, so it is orthogonally diagonalizable, while a quick calculation
shows that B has two distinct eigenvalues, so it is diagonalizable.

As a consequence, (C) and (D) are false. (A) is also false because B is not symmetric, hence
it cannot be orthogonally diagonalizable.

b) True/false

(i) TRUE: If either x = 0 or y = 0, then the orthogonality is clear. Otherwise they are
eigenvectors for the two eigenvalues 0 and 1, so they are orthogonal since A is symmetric.

(ii)) FALSE: Take A = I,,, which is symmetric and has only the eigenvalue 1.

(iii) FALSE: It suffices to find an orthogonal matrix that is not symmetric. Take for instance

o= (1 07)

(iv) TRUE: Recall that the singular values of A are the eigenvalues of ATA. When P is
orthogonal, we have (PA)T(PA) = ATPTPA = AT A.

(v) FALSE: Consider A = . Then ATA = A? has the eigenvalue 4, so that A has

0
2
TA)TAT A = A? has the eigenvalue 16, so that AT A has the

2

0
the singular value 2, while (A
singular value 4.

(vi) TRUE If A is orthogonally diagonalizable, this means that A = PDP~! where D is
diagonal and P is orthogonal. By Thm.7.9, it follows that exp(tA) = Pexp(tD)P~!

and by Lemma 7.8 exp(tD) is diagonal. Hence this is an orthogonal diagonalization of
exp(tA).



