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Ex 13.1 (Using the Gram–Schmidt process)
Let W be the subspace of R4 spanned by the basis vectors

b1 =


1
−1
−1
1

 , b2 =


2
1
−2
−1

 and b3 =


2
2
0
2

 .

a) Construct an orthogonal basis for W using the Gram–Schmidt process.

b) Consider A = [b1 b2 b3] having the vectors b1, b2, b3 as columns. Find out a QR decom-
position of A.

Solution:

a) We can use the Gram–Schmidt process to construct an orthogonal basis {v1, v2, v3} as fol-
lows.

First we set v1 = b1. Then to find v2, we subtract from b2 its projection on the subspace W1

spanned by b1 = v1. That is we compute:

v2 = b2 − projW1
b2 = b2 −

b2 · v1
v1 · v1

v1

=


2
1
−2
−1

− 1

2


1
−1
−1
1

 =


3/2
3/2
−3/2
−3/2

 .

As v2 is the component of b2 orthogonal to b1, {v1, v2} is an orthogonal basis of the subspace
W2 spanned by b1 and b2. The last step is to subtract from b3 its projection on the subspace
W2 and dub this result v3.

v3 = b3 − projW2
b3 = b3 −

b3 · v1
v1 · v1

v1 −
b3 · v2
v2 · v2

v2

=


2
2
0
2

− 1

2


1
−1
−1
1

− 1

3


3/2
3/2
−3/2
−3/2

 =


1
2
1
2

 .



b) We have seen that if Q is a matrix whose columns constitute an orthonormal basis of Col(A),
then a QR decomposition of the form A = Q ·R exists.

To find such a Q, we can normalize the orthogonal basis {v1, v2, v3} that we just obtained:

Q =


1/2 1/2 1/

√
10

−1/2 1/2 2/
√
10

−1/2 −1/2 1/
√
10

1/2 −1/2 2/
√
10

 .

Now, as the columns of Q are orthonormal, we have QTQ = I (this also holds when Q is
not square), so R is necessarily of the form

R = QTQR = QTA =

2 1 1
0 3 1

0 0
√
10

 .

Ex 13.2 (Finding an orthonormal basis)
Find an orthonormal basis for the span of the following vectors. 3

−4
5

 ,

−4
2
−6


Solution:
We use the Gram–Schmidt process:

v1 = b1 =

 3
−4
5

 , v2 = b2 −
b2 · v1
v1 · v1

v1 =

−4
2
−6

− −50

50
·

 3
−4
5

 =

−1
−2
−1


Then {v1, v2} is an orthogonal basis. To get an orthonormal basis {u1, u2}, we normalize both
vectors to get unit vectors:

u1 =
1

∥v1∥
v1 =

1√
50

 3
−4
5

 , u2 =
1

∥v2∥
v2 =

1√
6

−1
−2
−1


Ex 13.3 (QR factorization)
Find a QR factorization for each of the following matrices:

A =


−2 3
5 7
2 −2
4 6

 and B =


−1 6 6
3 −8 3
1 −2 6
1 −4 −3


Solution:
Factorization for A: First, find an orthogonal basis for the column space using Gram-Schmidt:

v1 =


−2
5
2
4

 , v2 =


3
7
−2
6

− 49

49


−2
5
2
4

 =


5
2
−4
2





Then we normalize these vectors and put them as columns of Q:

Q =
1

7


−2 5
5 2
2 −4
4 2


Then QTQ = I, so as in Exercise 13.1b), we get A = QR if

R = QTA =
1

7

(
−2 5 2 4
5 2 −4 2

)
−2 3
5 7
2 −2
4 6

 =

(
7 7
0 7

)

Factorization for B: Applying the Gram-Schmidt process to the columns of B, we obtain the
following orthogonal basis of ColB:

−1
3
1
1

 ,


3
1
1
−1

 ,


−1
−1
3
−1

 .

We do have to normalize them, but this is easy because they all have the same length
√
12.

We get

Q =
1√
12


−1 3 −1
3 1 −1
1 1 3
1 −1 −1


And finally we compute R:

R = QTB =
1√
12

−1 3 1 1
3 1 1 −1
−1 −1 3 −1



−1 6 6
3 −8 3
1 −2 6
1 −4 −3

 =
1√
3

6 −18 3
0 6 15
0 0 6



Ex 13.4 (Proof of Theorem 6.13)

Theorem 6.13 states as follows: For a matrix A ∈ Rm×n the following statements are equivalent:

(i) For every b ∈ Rm, the equation Ax = b has a unique least square solution.

(ii) ATA is invertible

(iii) The columns of A are linearly independent.

Solution: (i) ⇔ (ii) By Theorem 6.12, the space of all least square solutions of Ax = b equals

the solution spaces of the equation ATAx = Ab. Since A ∈ Rm×n, we have that ATA ∈ Rn×n.
Thus, in particular ATA is square and the solution spaces of ATAx = Ab consists of exactly
one element if and only if ATA is invertible. In summery, Ax = b has a unique least square
solution if and only if ATA is invertible.
(i) =⇒ (iii) Suppose otherwise, namely that the columns of A are linearly dependent, i.e.
there exists λ1, . . . , λm not all of which are 0 such that λ1A1 + · · · + λmAm = 0 (denoting Ai

for the i-th column of A. Then, taking the vector x = (λ1, . . . , λm)
T ∈ Rm,

Ax = λ1A1 + · · ·+ λmAm = 0.



Thus, x is a solution to Ax = 0. However, as we know that A0 = 0 and by (i), the solution to
Ax = 0 is unique, this must implies that x = 0 which contradicts the fact that not all of the λi

are zero.
(iii) =⇒ (ii) Recall that a square matrix is invertible if and only if it has trivial kernel. Thus,

it suffices to show that kerATA = {0}. Suppose x ∈ kerATA, i.e. ATAx = 0, then

0 = xT (ATAx) = (xTAT )Ax = (Ax)T (Ax) = ∥Ax∥2

implying Ax = 0. However, as the columns of A are linearly independent, as

0 = Ax = x1A1 + · · ·+ xmAm

it follows that x = 0 implying kerATA = {0} as desired.

Ex 13.5 (A least-squares problem)
Find all least-squares solution x⋆ of the system Ax = b and their least square errors ∥Ax⋆− b∥.

A =

 2 1
−2 0
2 3

 , b =

−5
8
1


Solution:
We have to solve ATAx∗ = AT b. We compute

ATA =

(
12 8
8 10

)
, AT b =

(
−24
−2

)
and then row reduce(

12 8 −24
8 10 −2

)
−→

(
3 2 −6
24 30 −6

)
−→

(
3 2 −6
0 14 42

)

−→
(

3 2 −6
0 1 3

)
−→

(
3 0 −12
0 1 3

)
=⇒ x∗ =

(
−4
3

)
The least-squares error is then ∥Ax∗ − b∥ = 0, so in fact x∗ is a solution of Ax = b.

Ex 13.6 (Another least-squares problem)
Find all least-squares solution x⋆ of the system Ax = b and their least square errors ∥Ax⋆− b∥.

A =


1 1 0
1 1 0
1 0 1
1 0 1

 , b =


1
3
8
2


Solution:
We compute

ATA =

4 2 2
2 2 0
2 0 2

 , AT b =

14
4
10


and solve ATAx = AT b with row reduction: 4 2 2 14

2 2 0 4
2 0 2 10

 −→

 2 1 1 7
2 2 0 4
2 0 2 10

 −→

 2 1 1 7
0 1 −1 −3
0 −1 1 3





−→

 2 1 1 7
0 1 −1 −3
0 0 0 0

 −→

 2 0 2 10
0 1 −1 −3
0 0 0 0

 −→

 1 0 1 5
0 1 −1 −3
0 0 0 0


=⇒ x∗ =

−t+ 5
t− 3
t


These are all the least-squares solutions. To get the least-squares error, we can pick any value
of t and compute that ∥Ax∗− b∥ =

√
20 (it must be the same for all t, otherwise these wouldn’t

all be least-squares solutions).

Ex 13.7 (QR decomposition for a least-square problem)
Consider

A =

2 3
2 4
1 1

 and b =

7
3
1

 .

a) Show that

A =

2/3 −1/3
2/3 2/3
1/3 −2/3

(
3 5
0 1

)
.

b) Use this QR decomposition of A to find the least squares solution to the equation Ax = b.

Solution:

a) We write

Q =

2/3 −1/3
2/3 2/3
1/3 −2/3

 R =

(
3 5
0 1

)
.

It can be easily checked that A = QR.

As the columns of Q are orthonormal and R is an upper triangular matrix, this is indeed a
QR decomposition of the matrix A.

b) In order to make use of this decomposition for the least-squares problem, note that the
equation system ATAb∗ = AT b is equivalent to the system (RTQTQRb∗ =)RTRb∗ = RTQT b.
Moreover, RT is invertible, so the least squares solutions for the equation Ax = b agree with
the solutions of Rx∗ = QT b.

We hence have to solve the system(
3 5
0 1

)
x∗ =

(
7
−1

)
,

giving

x∗ =

(
4
−1

)
.

Ex 13.8 (Linear regression)



(a) Find the straight line that best approximates (in the sense of least squares) the following
data points in R2: (2, 1), (5, 2), (7, 3), (8, 3)

(b) Draw a picture that illustrates the data points and the line that best approximates them.

Solution:
The vertical distance between a point (x0, y0) and the line y = ax+ b equals (ax0 + b)− y0, so
the question is to minimize

Q = (2a+ b− 1)2 + (5a+ b− 2)2 + (7a+ b− 3)2 + (8a+ b− 3)2.

As seen in the lecture, this is equivalent to the least-squares problem Ax = b with

x =

(
a
b

)
, A =


2 1
5 1
7 1
8 1

 , b =


1
2
3
3

 .

So we solve ATAx∗ = AT b as usual.

ATA =

(
142 22
22 4

)
, AT b =

(
57
9

)
The row reduction is a bit annoying, so let’s just use the formula for the inverse of a 2 × 2
matrix:

x∗ = (ATA)−1AT b =
1

84

(
4 −22

−22 142

)(
57
9

)
=

1

84

(
30
24

)
=

1

14

(
5
4

)
So the line that fits best is y = 5

14
x+ 4

14
or 5x− 14y = −4. Hopefully you can see that in your

picture :-)

Ex 13.9 (Linear regression)

Assume that you measure the measure the temperature near a chemical experiment at times t =
1, 2, 3, 4, 5, 6. The measurements y (ordered by time) that you obtain are 20, 30, 35, 40, 45, 45.
Find a affine function f(t) = y approximating your data with minimal least square error. Also,
give the value of the least square error.

Solution: Follow the same procedure as in Ex. 13.8 with

A =


1 1
2 1
3 1
4 1
5 1
6 1

 and b =


20
30
35
40
45
45


This yields the least square solution x∗ =

(
5

18 + 1
3

)
. Hence the linear function approximating

the data with minimal least square error is

f(t) = 5t+ 18 +
1

3



and the least square error for f is:

∥Ax∗ − b∥ =
10√
3
.

Ex 13.10 (Repetition of old topics with application in Section 7)

(a) Prove that the set of symmetric matrices in Rn×n are a subspaces of Rn×n.

(b) Prove that the dimension of this subspaces is n(n+1)
2

(c) What is the dimension of the space of anti-symmetric matrices?

Solution:

(a): The zero-matrix is symmetric. Sums of symmetric matrices are symmetric, and, a scalar
times a symmetric matrix yields a symmetric matrix. Hence the symmetric matrices form a
subspace of the space of all matrices in Rn×n.

(b): Let eij ∈ Rn×n be the matrix with 1 at the ij-th and at the ji-th position and 0 everywhere
else. And set

B := {e11, . . . , enn} ∪ {eij + eji : i, j = 1, . . . , n, i < j}.

It is clear that B is linearly independent and spans the space of symmetric matrices. Conse-
quently, it forms a basis for the symmetric matrices. Then, by counting, we see that |B| = n(n+1)

2

as claimed.

(c): The dimension is n(n+1)
2

− n.

Explanation: in part (b), the dimension was n(n+1)
2

because for a symmetric matrix, we can
choose all diagonal entries freely as well as all entries under the diagonal. That is a total of
n(n+1)

2
entries that we can choose freely. Then, because of symmetry, the entries above the

diagonal are prescribed (aij = aji). This thought is what led to the choice of basis above and
hence to the dimension of space of symmetric matrices.
Now for anti-symmetric matrices: Recall that anti-symmetric matrices have only zeros on the
diagonal. So here, we can only freely choose the entries under the diagonal. That is n less
entries than we were allowed to choose above. So the dimension is n(n+1)

2
− n.

For a rigorous proof, just write down the basis for the space of anti-symmetric matrices that
arises from this thought. (e.g. choose the basis entries to be all ẽij for i < j, where ẽij is the
n× n matrix that has a 1 at position ij and a −1 at position ji.)

Ex 13.11 (Two quick proofs)

a) Let A ∈ Rn×n. Show that AT = A if and only if Ax · y = x · Ay for all x, y ∈ Rn.

b) Let Q,U ∈ Rn×n be orthogonal matrices. Show that QU and Q−1 are also orthogonal.

Solution:

a) If AT = A, then for all x, y ∈ Rn we have Ax · y = (Ax)Ty = xTATy = xTAy = x · Ay.
Conversely, if the above equality holds for all x, y ∈ Rn, then in particular Aei · ej = ei · Aej
for all i, j ∈ {1, . . . , n}. Note that Aei · ej = aji and ei · Aej = aij, so if those terms are equal,
then AT = A.



b) If Q,U are orthogonal, then Q−1 = QT and U−1 = UT , so that

(QU)−1 = U−1Q−1 = UTQT = (QU)T .

Moreover, (Q−1)−1 = (QT )−1 = (Q−1)T , so that also Q−1 is orthogonal.

Ex 13.12 (Multiple choice and True/False questions)

a) Let the matrix A =

 −3 −2
0 1
2 −3

 and the vector b =

 −6
11
17

.

Then the solution in the sense of the least squares x∗ =

(
x∗
1

x∗
2

)
of the equation Ax = b

is such that

(A) x∗
2 = −2 (B) x∗

2 = 3 (C) x∗
2 = −1 (D) x∗

2 = 1

b) Decide whether the following statements are always true or if they can be false.

(i) Let y ∈ Rn and W be a subspace of Rn. Then y − projW (y) is orthogonal to W .

(ii) If W is a subspace of Rn, then projW ◦ projW = projW , where ◦ denotes the compo-
sition of maps.

(iii) If A = QR and Q has orthonormal columns, then R = QTA.

(iv) A least-squares solution of Ax = b is a vector x0 ∈ Rn such that Ax0 = projCol(A)(b).

(v) If b ∈ Col(A), then the least-squares solutions are exactly the solution of the equation
Ax = b.

(vi) The line of regression is unique provided we have measurements for at least two
different inputs.

Solution:

a) (A) Solving ATAx = AT b yields the answer.

b) Decide whether the following statements are always true or if they can be false.

(i) True. This follows from the orthogonal projection theorem.

(ii) True. This follows from the two facts that projW (x) ∈ W for all x ∈ W and that
projW (y) = y whenever y ∈ W .

(iii) True. We saw in the course that QTQ = In when Q ∈ Rm×n. Thus we can multiply
A = QR by QT from the right.

(iv) True. We know that projCol(A)(b) gives the closest point in Col(A) to b.

(v) True. If Ax = b has a solution, then ∥Ax − b∥ has the minimal value 0. Any
least-squares solution thus satisfies ∥Ax− b∥ = 0, which is equivalent to Ax = b.

(vi) True. The matrix for the corresponding least-squares problem then has two linearly
independepnt columns and therefore the least-squares solution is unique.


