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Ex 12.1 (Diagonalizability)

a. Let A be a 3×3 matrix satisfying A3 = I3. Answer the following two questions: (i) What
is the dimension of Ker(A)? (ii) Is 0 an eigenvalue of A?

b. Let A be a 3× 3 with characteristic polynomial equal to χA(λ) = (λ− 1)2(λ+1). Which
of the following statements is true?

□ A must be diagnoalizable.

□ σ(A) = {−1, 1}

□ A cannot be diagonalizable.

□ In case A is diagonalizable, then there exist linearly independent vectors v1, v2 ∈ R2

each satisfying Avi = −vi.

Solution:

a. Correct answer: dimKerA = 0 and 0 is not an eigenvalue of A.

Reason: If 0 were an eigenvalue of A, then there exists v ̸= 0 so that Av = 0. But then
A3v = 0 and hence I3v = 0. This implies that v = 0. A contradiction. By the same
argument Av ̸= 0 for v ̸= 0. Therefore, Ker(A) = {0} and hence dimKer(A) = 0.

b. The only correct response σ(A) = {−1, 1}.

Reason: A having the characteristic polynomial χA(λ) = (λ− 1)2(λ+ 1) only tells us its
eigenvalues and it does not tell us the dimension of the corresponding eigenspace to 1.
So, as A is diagonizable if and only if the eigenspace corresponding to the eigenvalue 1
must have dimension 2, by simply finding examples for which this is and is not the case,
we’ve shown that the first and third statements are false. An example of this holding is
simply the diagonal matrix with diagonals 1, 1,−1 while an example of where this does
not hold is

A =

 1 1 0
0 1 0
0 0 −1


Finally, the last statement holds only if the eigenspace corresponding to the eigenvalue
−1 has dimension 2. However, this is not possible as the algebraic multiplicity of −1 is 1
and so, the dimension of the eigenspace is 1.

Ex 12.2 (Inner product calculations)
Let

u =

 3
−1
5

 , v =

 6
−2
3

 .



a) Calculate u · u, v · v, u · v, ∥u∥, and ∥v∥.

b) Normalize u and v (i.e., find a unit vector with the same direction).

c) Find the distance between u and v, and find the cosine of the angle between them.

d) Find a basis of the space orthogonal to the plane spanned by u and v.

Solution:

a)
u · u = 3 · 3 + (−1) · (−1) + 5 · 5 = 35

v · v = 6 · 6 + (−2) · (−2) + 3 · 3 = 49

u · v = 3 · 6 + (−1) · (−2) + 5 · 3 = 35

∥u∥ =
√
u · u =

√
35, ∥v∥ =

√
v · v =

√
49 = 7

b)

u

∥u∥
=

1√
35

 3
−1
5

 ,
v

∥v∥
=

1

7

 6
−2
3


c) The distance can be computed by

∥u− v∥ =
√

(3− 6)2 + (−1− (−2))2 + (5− 3)2) =
√
9 + 1 + 4 =

√
14

We can compute the angle using u · v = ∥u∥∥v∥ cos(α(u, v)) as follows:

cos(α(u, v)) =
u · v

∥u∥∥v∥
=

35√
35
√
49

=

√
35

7

(
=

√
5

7

)
.

d) Note that the space orthogonal to Span(u, v) is a line, i.e., one-dimensional, so any non-zero
vector that is orthogonal to u and v will form a basis. Let

w =

a
b
c


be such a vector, meaning that u · w = 0 and v · w = 0. This yields a linear system

3a− b+ 5c = 0

6a− 2b+ 3c = 0
.

A non-trivial solution of this system is given by

w =

1
3
0

 .

Since we are in the 3-dimensional case, we could also use the cross product (not part of the
course): From two vectors u and v this product yields a third vector u×v that is orthogonal
to both u and v, and has length ∥u× v∥ = ∥u∥ ∥v∥ sin(u, v). Hence in this case

u× v =

 3
−1
5

×

 6
−2
3

 =

 7
21
0


gives another basis of the orthogonal space.



Ex 12.3 (An orthogonal basis)
Let

B =


 0
−1
1

 ,

1
1
1

 ,

−2
1
1

 , u =

10
4
3

 , v =

 1
−2
3

 .

Show that B is an orthogonal basis of R3 and determine [u]B and [v]B, i.e. represent them in
the basis B.

Solution:
To see that it is an orthogonal set, take the inner product of every pair and check that you get
0. As seen in the lecture, this already implies that B is an independent set, and 3 independent
vectors in R3 are always a basis.
To represent a vector in an orthogonal basis, we don’t have to do a row reduction like for other
bases, because the orthogonality lets us use simple formulas:

u =
u · b1
b1 · b1

b1 +
u · b2
b2 · b2

b2 +
u · b3
b3 · b3

b3 =
−1

2
b1 +

17

3
b2 +

−13

6
b3

=⇒ [u]B =

 − 1/2
17/3
− 13/6

 =
1

6

 −3
34
−13


v =

v · b1
b1 · b1

b1 +
v · b2
b2 · b2

b2 +
v · b3
b3 · b3

b3 =
5

2
b1 +

2

3
b2 +

−1

6
b3

=⇒ [v]B =

 5/2
2/3
− 1/6

 =
1

6

15
4
−1


Ex 12.4 (Another orthogonal basis)
Consider the vectors

u =

 3
−3
0

 , v =

 2
2
−1

 , w =

1
1
4

 x =

 5
−3
1

 .

(a) Show that {u, v, w} is an orthogonal basis of R3.

(b) Write the vector x as a linear combination of u, v and w.

Solution:

(a) We check that u · v = u · w = v · w = 0, thus {u, v, w} is an orthogonal basis of R3.

(b) We find

x =
x · u
u · u

u+
x · v
v · v

v +
x · w
w · w

w =
4

3
u+

1

3
v +

1

3
w.

Ex 12.5 (Properties of the orthogonal complement)
Let W ⊂ Rn be a subspace and W⊥ be its orthogonal complement. Show the following
statements:



• Lemma 6.2:

(i) W⊥ is a subspace of Rn. Moreover, W ∩W⊥ = {0}.
(ii) If B spans W , then W⊥ = {z ∈ Rn : z · b = 0 ∀b ∈ B}.

• Theorem 6.4: dim(W⊥) = n− dim(W ).

Hint: Let b1, ..., bk be a basis of W and M the matrix whose columns are the bi.
Check that W⊥ = Ker(M) and use Theorem 6.3.

Solution:

a) Let w ∈ W be an arbitrary element. Then 0 · w = 0, so that 0 ∈ W⊥. If x, y ∈ W⊥ and
λ ∈ R, then x ·w = 0 and y ·w = 0 and therefore (λx+y) ·w = λx ·w+y ·w = λ0+0 = 0
and therefore λx + y ∈ W⊥. Hence W⊥ is a subspace of Rn. As the zero vector belongs
to every subspace, it only remains to show that if w ∈ W ∩W⊥, then w = 0. For such w
we have 0 = w · w = ∥w∥2 and therefore w = 0.

b) If B spans W , then in particular B ⊂ W and therefore W⊥ ⊂ {z ∈ Rn : z ·b = 0 ∀b ∈ B}
(the right-hand side set has less constraints). To prove the reverse inclusion, let w ∈ W
and write w =

∑k
i=1 λibi for some bi ∈ B. If z · b = 0 for all b ∈ B, we get that

z · w =
k∑

i=1

λi z · bi︸︷︷︸
=0

= 0

and therefore z ∈ W⊥.

c) Let B = {b1, . . . , bk} be a basis for W and write those vectors as columns in a matrix M .
This matrix is of size n × k and has rank k. We know from b) and Theorem 6.3 that
W⊥ = col(M)⊥ = Ker(MT ). The matrix MT is of size k × n and by the rank theorem
we know that n = Rank(MT ) + dim(Ker(MT )) = k + dim(W⊥). Since k = dim(W ) this
proves the claim.

Ex 12.6 (F TF vs. FF T for matrices with orthogonal columns)
Consider the matrix

F =

(
1 2
−4 1/2

)
.

Compute F TF and FF T . Are these two matrices equal ?

Solution:

F TF =

(
17 0
0 17/4

)
, FF T =

(
5 −3
−3 65/4

)
.

These matrices are not equal.

Ex 12.7 (Orthogonality and projections) Prove the following statements about orthogo-
nality and projections:

(i) Every orthogonal set that does not contain the zero vector is independent.
(This implies that in particular orthonormal sets are independent.)

(ii) The orthogonal projection from Rn onto a linear subspace W ⊂ Rn is a linear map.



Solution:
i) Let S = {v1, . . . , vk} ⊆ Rn be an orthogonal set which doesn’t contain 0. We will show S is
linearly independent.
Suppose λ1, . . . , λk ∈ R is such that

λ1v1 + · · ·+ λkvk = 0.

Then, for any i = 1, . . . , k, we have

0 = vi · 0 = vi · (λ1v1 + · · ·+ λkvk) = λ1vi · v1 + · · ·+ λkvi · vk.

Since S is an orthogonal set, vi · vj = 0 for all i ̸= j and thus, all but the i-th term in the above
sum vanishes and we have

0 = λivi · vi = λi∥vi∥2.
However, as we had assumed vi ̸= 0, it follows that ∥vi∥2 > 0 and so, λi = 0 and consequently
S is linearly independent.
ii) Taking x1, x2 ∈ Rn and λ ∈ R, it suffices to show

projW (x1 + λx2) = projW (x1) + λprojW (x2). (1)

Recall that, for x ∈ Rn, the orthogonal projection of x on to W : projW (x) is the unique element
of W such that x− projW (x) ∈ W⊥. Thus, in order to show Eqaution (1), it suffices to show

(a) projW (x1) + λprojW (x2) ∈ W , and

(b) (x1 + λx2)− (projW (x1) + λprojW (x2)) ∈ W⊥.

(a) is clearly true since projW (x1) and projW (x2) are both in W so any linear combination of
them will also be contained in W .
In order to show (b), we need to show that, for all w ∈ W ,

((x1 + λx2)− (projW (x1) + λprojW (x2))) · w = 0.

Indeed,

((x1 + λx2)− (projW (x1) + λprojW (x2))) · w = ((x1 − projW (x1)) + λ(x2 − projW (x2))) · w
= (x1 − projW (x1)) · w + λ((x2 − projW (x2)) · w)
= 0 + 0 = 0

where the last line follows as x1 − projW (x1) and x2 − projW (x2) are in W⊥ by the definition
of projection.

Ex 12.8 (Projection onto a subspace)
Let

u =

3
1
2

 , v1 =

 1
0
−1

 , v2 =

1
1
1

 .

Determine the orthogonal projection projW (u) of u onto the subspace W spanned by v1, v2.
Give it both in the basis B = {v1, v2} of W and in the standard basis of R3.

Solution:
Because v1 and v2 are orthogonal, we can simply use the formula

projW (u) =
u · v1
v1 · v1

v1 +
u · v2
v2 · v2

v2 =
1

2
v1 +

6

3
v2



Denoting the standard basis by E , this means that

[projW (u)]B =

(
1/2
2

)
, [projW (u)]E =

1

2

 1
0
−1

+ 2

1
1
1

 =

5/2
2
3/2

 =
1

2

5
4
3

 .

Ex 12.9 (The row space and the kernel)
Consider an m× n matrix A.

a) Prove that every vector x in Rn can be written uniquely as x = p + u where p belongs to
Row(A) and u belongs to Ker(A).

b) Afterwards, show that if the equation Ax = b is consistent, then there is a unique p in
Row(A) such that Ap = b.
Hint: For uniqueness, use Lemma 6.2 (b).

Solution:

a) From Theorem 6.3 we deduce that Row(A)⊥ = Ker(A), so that the claim follows from the
orthogonal decomposition theorem (Theorem 6.7) applied to the subspace Row(A).

b) Assume that the system Ax = b is consistent. Let x be a solution. Due to a) we can
decompose it as x = p + u with p ∈ Row(A) and u ∈ Ker(A). Then Ap = A(x − u) =
Ax− Au = b− 0 = b. Thus the equation Ax = b has at least a solution p in Row(A).

Let now p1 and p2 be two solutions to Ax = b such that p1, p2 ∈ Row(A).

Then p2 − p1 belongs to Ker(A) since

A(p2 − p1) = Ap2 − Ap1 = b− b = 0.

Thus p2 − p1 is in (Row(A))⊥ ∩Row(A). Applying Ex. 12.3 we find that p2 − p1 = 0, which
shows uniqueness.

Ex 12.10 (Closest point in a column space)
Let A be the following matrix

A =


1 −1 1
0 1 2
−1 −1 1
0 1 0

 .

1. Show that the columns of A are an orthogonal set.

2. Write U , the matrix made of the normalized columns vectors of A.

3. Find the closest point to y =


1
1
1
1

 in Col(U) and the distance from b =


1
2
1
2

 to Col(U).

Solution:



1. To show that the columns of A are an orthogonal set all we have to do is to check that
ATA is a diagonal matrix. Here:

ATA =

2 0 0
0 4 0
0 0 6

 .

2. In order to find the matrix U one can notice that the diagonal of the matrix ATA reads
the squared norm of the matrix A’s columns. So we have:

U =


1/
√
2 −1/2 1/

√
6

0 1/2 2/
√
6

−1/
√
2 −1/2 1/

√
6

0 1/2 0

 .

3. The closest point to y in Col(U) is the projection (denoted as ŷ) of y on Col(U). The
columns of U being orthonormal, Theorem 6.8 tells us that ŷ = U UT y. That is:

ŷ =


11/12 1/12 −1/12 −1/4
1/12 11/12 1/12 1/4
−1/12 1/12 11/12 −1/4
−1/4 1/4 −1/4 1/4



1
1
1
1



=


2/3
4/3
2/3
0

 .

The distance from b to Col(U) is ∥b− b̂∥, where b̂ is the projection of b on Col(U),

b̂ = U UT b =


1/2
5/2
1/2
1/2

 ,

thus ∥b− b̂∥ =
√
3.

Ex 12.11 (Distance to different subspaces)

Let

u =

1
1
1

 , v1 =

1
2
0

 , v2 =

−2
1
2

 .

Compute the distance from u to the line spanned by v1, and the distance from u to the plane
spanned by v1 and v2.

Solution:
Let L = Span(v1) and P = Span(v1, v2). We calculate these distances using the fact that the
orthogonal projection of a vector on a subspace is the point in that subspace closest to that
vector. So

dist(u, L) = ∥u− projL(u)∥, dist(u, P ) = ∥u− projP (u)∥



The projection onto the line L is given by

projL(u) =
u · v1
v1 · v1

v1 =
3

5
v1 =

1

5

3
6
0



=⇒ dist(u, L) = ∥

1
1
1

− 1

5

3
6
0

 ∥ = ∥1
5

 2
−1
5

 ∥ =
1

5

√
22 + (−1)2 + 52 =

√
30

5

Moreover, since v1 and v2 are orthogonal, we know that

projP (u) =
u · v1
v1 · v1

v1 +
u · v2
v2 · v2

v2 =
3

5
v1 +

1

9
v2 =

1

45

17
59
10



=⇒ dist(u, P ) = ∥

1
1
1

− 1

45

17
59
10

 ∥ = ∥ 1

45

 28
−14
35

 ∥ =
1

45

√
282 + 142 + 352 =

7

3
√
5

Ex 12.12 (Multiple choice and True/False questions)
a) Let A ∈ R3×3. Which of the following sets of eigenvalues is possible?

(A) {1, 1 + i, 2− i}, (B) {1, 2, 4i}, (C) {0, 3− i, 3 + i}, (D) {i, 3− i, 3 + i}.

b) Decide whether the following statements are always true or if they can be false.

(i) Let u, v, w ∈ Rn. If u · v = 0 and v · w = 0, then u · w ̸= 0.

(ii) Let u, v ∈ Rn. If the distance between u and v equals the distance between u and −v,
then u and v are orthogonal.

(iii) If A ∈ Rn×n, then Col(A) = Ker(A)⊥.

(iv) Let W be a subspace of Rn. If x is orthogonal to every element of a basis for W , then
x ∈ W⊥.

(v) If λ ∈ R and x ∈ Rn, then ∥λx∥ = λ∥x∥.

(vi) The orthogonal projection of u onto v is the same as the orthogonal projection of u onto
av for any a ̸= 0.

(vii) If W is a subspace of Rn and u ∈ W , then projW (u) = u.

(viii) Let A be an n×n matrix. The columns of A form an orthonormal basis of Rn if and only
if det(A) = 1.

(ix) If ATA = I, then A must be square.

(x) A square matrix has orthonormal columns if and only if it has orthonormal rows.

(xi) If the vectors in an orthogonal set of nonzero vectors are normalized, then some of the
new vectors may not be orthogonal.

(xii) A matrix with orthonormal columns is an orthogonal matrix.



(xiii) For each y ∈ Rn and each subspace W of Rn, the vector y − projW y is orthogonal to W .

(xiv) If the columns of an n × p matrix U are orthonormal, then UUTy is the orthogonal
projection of y onto the column space of U .

Solution:
a) The answer is (C). Indeed, we know that for a matrix with real coefficients complex eigen-
values appear in pairs in the sense that also the conjugate is an eigenvalue (this rules out (A),
(B) and (D)).

b)

(i) False: Consider for instance u = e1, v = e2, w = e3 in R3.

(ii) True: If we have ∥u− v∥ = ∥u− (−v)∥, then (u− v) · (u− v) = (u+ v) · (u+ v), i.e.

u · u− 2(u · v) + v · v = u · u+ 2(u · v) + v · v.

Hence −2(u · v) = 2(u · v), which implies that u · v = 0.
Remark: For questions relating the distance to the inner product, it is always a good idea to

consider the squared distance to avoid the square-roots.

(iii) False: For instance, for A =

(
0 0
1 0

)
we have ColA = Span(e2) = KerA and (KerA)⊥ =

Span(e1).

(iv) True: This is a special case of Lemma 6.2 (b).

(v) False: The correct formula is ∥λx∥ = |λ|∥x∥, so a counterexample is given by x = e1 and
λ = −1.

(vi) True: As seen in the course the a cancels out of the formula:

projav(u) =
u · (av)

(av) · (av)
(av) = a

a(u · v)
(a2(v · v))

v =
u · v
v · v

v = projv(u).

(vii) True: By Theorem 6.7, there is a unique decomposition u = p+o with p = projW (u) ∈ W
and o ∈ W⊥. But if u ∈ W , then u = u+0 is such a decomposition, hence projW (u) = u.

(viii) False:

(
1 0
0 −1

)
has orthonormal columns but determinant −1, and

(
1 1
0 1

)
has deter-

minant 1 but does not have orthogonal columns. So the implication doesn’t work in either
direction.

(ix) False:

(
1 0 0
0 1 0

)1 0
0 1
0 0

 =

(
1 0
0 1

)

(x) True: By Theorem 6.6, a matrix A has orthonormal columns if and only if ATA = I.
Since A is assumed to be square, this implies that A is invertible with A−1 = AT . Hence
also AAT = I, or in other words (AT )TAT = I. By the same theorem, this means that
AT has orthonormal columns, which means that A has orthonormal rows.

(xi) False: As (λv) · (µw) = (λµ)(v · w), scaling vectors doesn’t affect the orthogonality
relations between them.



(xii) False: The matrix also needs to be a square matrix.

(xiii) True: This is one of the crucial properties of the orthogonal projection (cf. Theorem 6.7).

(xiv) True: This is stated in Theorem 6.8.


