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Ex 11.1 (Diagonalizable or not?)
Which of the following matrices are diagonalizable?

M1 =

(
2 0
−1 1

)
, M2 =

1 −2 0
0 6 0
1 −2 2

 , M3 =

1 1 0
0 1 1
0 0 2

 .

Solution:
In each case, we have to determine the characteristic polynomial and its roots. If the roots are
all distinct, and there are as many as the size of the matrix, then the matrix is diagonalizable.
If they are not all distinct, then the matrix may or may not be diagonalizable. To find out we’ll
need to determine the dimensions of the eigenspaces, and see if they equal the multiplicity of
the corresponding eigenvalue as a root of the characteristic polynomial.

det(λI −M1) =

∣∣∣∣λ− 2 0
1 λ− 1

∣∣∣∣ = (λ− 2)(λ− 1)

Since this has two distinct roots, M1 is diagonalizable.

det(λI −M2) =

∣∣∣∣∣∣
λ− 1 2 0
0 λ− 6 0
−1 2 λ− 2

∣∣∣∣∣∣ = (λ− 1)

∣∣∣∣λ− 6 0
2 λ− 2

∣∣∣∣
= (λ− 1)(λ− 6)(λ− 2)

We find three distinct roots, so M2 is diagonalizable.

det(λI −M3) =

∣∣∣∣∣∣
λ− 1 −1 0
0 λ− 1 −1
0 0 λ− 2

∣∣∣∣∣∣ = (λ− 1)2(λ− 2)

The roots are not distinct, so we will have to find the eigenspace of λ = 1 and see if its dimension
equals the multiplicity of λ = 1 as a root, which is 2. To find a basis of the eigenspace, we’ll
need a basis of Ker(M1 − 1 · I), which is easy because

M3 − I =

0 1 0
0 0 1
0 0 1

 ,

so all solutions of (M3 − I)x = 0 are of the form

t
0
0

, so a basis for Ker(M1 − 1 · I) is

1
0
0

.

Hence the eigenspace of λ = 1 has dimension 1, which is less than its multiplicity as a root of



(1− λ)2(2− λ). Therefore M3 is not diagonalizable.

Ex 11.2 (Diagonalization of a matrix)
Diagonalize the following matrix.

A =

 2 0 0
1 2 1
−1 0 1


If not stated otherwise, this means finding a diagonal matrix D and an invertible matrix P
such that A = PDP−1. In particular, you do not need to compute P−1.

Solution:
We follow the method presented in the lecture:

• Find the eigenvalues. Laplace expansion with respect to the first row yields

det(λI − A) =

λ− 2 0 0
−1 λ− 2 −1
1 0 λ− 1

 = (λ− 2)2(λ− 1) ⇒ λ1 = 1, λ2 = 2, λ3 = 2

• Find bases of the eigenspaces.

A− λ1 · I =

 1 0 0
1 1 1
−1 0 0

 −→

1 0 0
0 1 1
0 0 0

 ⇒ x =

 0
−t
t

 ⇒ v1 =

 0
−1
1


A− λ2 · I = A− λ3I =

 0 0 0
1 0 1
−1 0 −1

 −→

0 0 0
1 0 1
0 0 0


⇒ x =

−t
s
t

 = s ·

0
1
0

+ t ·

−1
0
1

 ⇒ v2 =

0
1
0

 , v3 =

−1
0
1


• Construct the similarity matrix P and diagonal matrix D.

P = [v1 v2 v3] =

 0 0 −1
−1 1 0
1 0 1

 , D =

λ1 0 0
0 λ2 0
0 0 λ3

 =

1 0 0
0 2 0
0 0 2

 ,

• Check AP = PD (this step is optional).

AP =

 2 0 0
1 2 1
−1 0 1

 0 0 −1
−1 1 0
1 0 1

 =

 0 0 −2
−1 2 0
1 0 2


PD =

 0 0 −1
−1 1 0
1 0 1

1 0 0
0 2 0
0 0 2

 =

 0 0 −2
−1 2 0
1 0 2


Ex 11.3 (Déjà vu?)
Diagonalize the following matrix. 

−2 0 0 0
0 −2 0 0
2 −4 2 0
0 0 0 2





Solution:

• Find the eigenvalues. Laplace expansion (first row, then second row) yields

det(λI − A) = (λ+ 2)2(λ− 2)2 ⇒ λ1 = −2, λ2 = −2, λ3 = 2, λ4 = 2

• Find bases of the eigenspaces.

A− λ1 · I = A− λ2 · I =


0 0 0 0
0 0 0 0
2 −4 4 0
0 0 0 4



⇒ x =


2s− 2t

s
t
0

 = s ·


2
1
0
0

+ t ·


−2
0
1
0

 ⇒ v1 =


2
1
0
0

 ,⇒ v2 =


−2
0
1
0



A− λ3 · I = A− λ4I =


−4 0 0 0
0 −4 0 0
2 −4 0 0
0 0 0 0

 −→


1 0 0 0
0 1 0 0
1 −2 0 0
0 0 0 0

 −→


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



⇒ x =


0
0
s
t

 ⇒ v3 =


0
0
1
0

 , v4 =


0
0
0
1


• Construct the similarity matrix P and diagonal matrix D.

P = [v1 v2 v3 v4] =


2 −2 0 0
1 0 0 0
0 1 1 0
0 0 0 1

 , D =


−2 0 0 0
0 −2 0 0
0 0 2 0
0 0 0 2


• Check AP = PD. (this step is optional)

AP =


−2 0 0 0
0 −2 0 0
2 −4 2 0
0 0 0 2



2 −2 0 0
1 0 0 0
0 1 1 0
0 0 0 1

 =


−4 4 0 0
−2 0 0 0
0 −2 2 0
0 0 0 2



PD =


2 −2 0 0
1 0 0 0
0 1 1 0
0 0 0 1



−2 0 0 0
0 −2 0 0
0 0 2 0
0 0 0 2

 =


−4 4 0 0
−2 0 0 0
0 −2 2 0
0 0 0 2



Ex 11.4 (More diagonalizability examples)
Consider

A =

(
3 −1
1 5

)
, B =

4 0 0
1 4 0
0 0 5

 C =

−1 4 −2
−3 4 0
−3 1 3

 , D =

4 2 2
2 4 2
2 2 4

 and E =

(
5 1
0 5

)
.



1. For each matrix find out the eigenvalues and the corresponding eigenvectors.
Hint: For C and D the rational root theorem (see Ex. 10.8) helps to find the eigenvalues.

2. Find out which ones are diagonalizable.

Solution:

• The solutions of the characteristic equation

det(λI − A) = λ2 − 8λ+ 16 = 0

are λ1 = λ2 = 4. So A has a unique eigenvalue (λ = 4) of algebraic multiplicity equal to
2. As the corresponding eigenspace Ker(A− 4I) is spanned by the vector(

−1
1

)
,

it has dimension 1. Thus, from the theorem of the lecture, A is not diagonalizable.

• As B is lower triangular, we can read off that its characteristic polynomial is (λ−4)2(λ−5).
Hence its eigenvalues are 4 and 5. The eigenvalue 4 has algebraic multiplicity 2 and a
one-dimensional eigenspace spanned by: 0

1
0

 .

Again by the theorem of the lecture this implies that B is not diagonalizable. The
eigenspace associated to the eigenvalue 5 is spanned by:0

0
1

 .

• C has three distinct eigenvalues: 1, 2 and 3. This shows that C is diagonalizable. The
eigenspaces are all 1-dimensional and spanned by:1

1
1

 for λ = 1,

2/3
1
1

 for λ = 2,

1/4
3/4
1

 for λ = 3.

• The eigenvalues of D are 8 and 2, where 8 has multiplicity 1 and 2 has multiplicity 2.
The eigenspace for 8 is spanned by 1

1
1

 .

The eigenspace for 2 is 2-dimensional and spanned by 1
−1
0

 and

 1
0
−1

 .

Thus, D is diagonalizable.



• E has one eigenvalue 5, with algebraic multiplicity 2. The eigenspace associated to 5 is
1-dimensional and spanned by (

1
0

)
.

Thus E is not diagonalizable.

Ex 11.5 (Powers of a diagonalizable matrix)
Let A = PDP−1 with P ∈ Rn×n invertible and D ∈ Rn×n a diagonal matrix. Show that for
any k ∈ N it holds that Ak = PDkP−1.
Remark: Powers of a diagonal matrix are easy to calculate. We have seen in the course that we just

need to take the corresponding powers of the diagonal elements.

Solution:
We prove the statement by induction on k. For k = 1 the statement is obvious. Next, for k > 1
we have

Ak = Ak−1A = (PDk−1P−1)(PDP−1) = PDk−1(P−1P )DP−1 = PDk−1DP−1 = PDkP−1.

Ex 11.6 (Matrix representation of linear maps)
Let T : R3 → R3 be the linear transformation given by

T

x
y
z

 =

 4z
3x+ 5y − 2z
x+ y + 4z

 .

Consider the ordered basis of R3 given by

B =


1
1
1

 ,

1
1
0

 ,

1
0
0

 .

Find the matrix M = [T ]
B←B

that represents T in the basis B.[T (v)]B = M · [v]B.

Solution:
Method 1: The columns of [T ]

B←B
are the vectors [T (b1)]B, [T (b2)]B, [T (b3)]B, and the vector

[T (bi)]B is the solution of Bx = T (bi), where B is the matrix with columns b1,b2,b3. So we
can use row reduction to find these columns. We can even find them simultaneously using the
following row reduction:

( B | T (b1)T (b2)T (b3) ) −→
(

I | [T ]
B←B

)
We have (

T (b1) T (b2) T (b3)
)
=

4 0 0
6 8 3
6 2 1

 .

So we do 1 1 1 4 0 0
1 1 0 6 8 3
1 0 0 6 2 1

 −→

 1 1 1 4 0 0
0 0 −1 2 8 3
0 −1 −1 2 2 1

 −→

 1 1 1 4 0 0
0 1 1 −2 −2 −1
0 0 1 −2 −8 −3





−→

 1 1 0 6 8 3
0 1 0 0 6 2
0 0 1 −2 −8 −3

 −→

 1 0 0 6 2 1
0 1 0 0 6 2
0 0 1 −2 −8 −3


⇒ [T ]

B←B
=

 6 2 1
0 6 2
−2 −8 −3


Method 2: We saw in the lecture that if B is the matrix whose columns are the vectors of B,
and A is the matrix representing T in the standard basis, then

[T ]
B←B

= B−1AB.

So we first find B−1 with row reduction: 1 1 1 1 0 0
1 1 0 0 1 0
1 0 0 0 0 1

 −→

 1 1 1 1 0 0
0 0 −1 −1 1 0
0 −1 −1 −1 0 1

 −→

 1 1 1 1 0 0
0 1 1 1 0 −1
0 0 1 1 −1 0



−→

 1 1 0 0 1 0
0 1 0 0 1 −1
0 0 1 1 −1 0

 −→

 1 0 0 0 0 1
0 1 0 0 1 −1
0 0 1 1 −1 0


In the standard basis of R3, the matrix of T is

A =

0 0 4
3 5 −2
1 1 4

 ,

so

[T ]
B←B

= B−1AB =

0 0 1
0 1 −1
1 −1 0

0 0 4
3 5 −2
1 1 4

1 1 1
1 1 0
1 0 0

 =

 6 2 1
0 6 2
−2 −8 −3

 .

Ex 11.7 (Another matrix representation)
Let the linear transformation T : P2 → R3 be defined by:

T (p) =

p(0)
p(0)
p(2)

 for any polynomial p ∈ P2.

a) Find the matrix A of the linear transformation T in terms of the standard bases of P2 and
R3.

b) Using the matrix A, determine the kernel and image of T .

Solution:

a) A Polynomial p ∈ P2 is written as p(t) = a0 + a1t+ a2t
2 and we have that

T (p) =

 a0
a0

a0 + 2a1 + 4a2





Given {p1,p2,p3} the canonical basis of P2 with p1(t) = 1, p2(t) = t and p3(t) = t2,
then the canonical matrix associated with T is

A =
(
T (p1) T (p2) T (p3)

)
=

1 0 0
1 0 0
1 2 4

 .

b) To obtain the T kernel we determine KerA by writing the solution set of Ax = 0 in

parametric vector form. Since A ∼

1 0 0
0 1 2
0 0 0

,


 0
−2
1

 is a basis for KerA and it

follows that

KerT = {p ∈ P2 : p(t) = α · (−2t+ t2) with α ∈ R} .

To get the image of T we define ColA by selecting the pivot columns of A.

Since


1
1
1

 ,

0
0
2

 is a basis of ColA, we have

RanT =

x ∈ R3 : x = α

1
1
1

+ β

0
0
2

 with α ∈ R and β ∈ R

 .

Ex 11.8 (Partial proof of Theorem 5.10)

Let A ∈ Rn×n and σ(A) = {λ1, ..., λk} (distinct list of eigenvalues). Prove that:

(1) If A is diagonalizable, then for each i:
multgeomA(λi) = multalgA(λi).

(2) A is diagonalziable if and only if

n∑
i=1

multgeomA(λi) = n

Solution:

(1): Recall that for a diagonal n × n matrix D with diagonal entries di, the characteris-
tic polynomial is the product (λ − d1)(λ − d2)...(λ − dn). Hence the eigenvalues are the di
and their algebraic multiplicity is the number of times it shows up on the diagonal, that is,
multalgD(di) = #{j : di = dj}.
On the other hand, ei is an eigenvector of D for di. Therefore:
multgeomD(di) = # independent eigenvectors for di = #{j : di = dj}.
So multalgD(di) = multgeomD(di).

Now if A is diagonalizable, then A is similar to a diagonal matrix D, and by Proposition 5.6:
the eigenvalues of A and D as well as their algebraic and geometric multiplicities are the same.

(2) ⇒: Before we even start the proof, let us observe the following: while for the first part
(above) it was not relevant that the list of eigenvalues λ1, ..., λk is distinct, it does play a role in
this part. Observe that the sum of geometric multiplicies would become larger if we summed
the multiplicity of double occuring eigenvalues twice.
Assume that A is diagonalizable. By Thm.5.7, this means that A has an eigenbasis B. This
implies that the elements b1, ..., bn of B are eigenvectors of A and that they are independent.



Each bi must live in the eigenspace EA(λj) of some eigenvalue λj of A. (Several bi might be
eigenvectors of the same λj and hence live in the same eigenspace EA(λj).)
By independence of the bi we get:
multgeomA(λj) = dimEA(λj) ≥ #indep. eigenvectors in EA(λj) ≥ #{bi : bi ∈ EA(λj)}.
So

∑n
i=1multgeomA(λi) =

∑n
i=1 dim(EA(λi)) ≥ n.

But also, since eigenvectors of different eigenvalues are always independent (Thm.5.4), the sum∑n
i=1 dim(EA(λi)) must be ≤ n. (Otherwise we would have more than n independent vectors

in Rn which is not possible.)
Hence

∑n
i=1multgeomA(λi) =

∑n
i=1 dim(EA(λi) = n.

⇐: Assume that
∑n

i=1multgeomA(λi) = n. By definition of geometric mulitiplicity, the
number of independent eigenvectors for the eigenvalue λi is multgeomA(λi). Moreover, by
Thm.5.4, eigenvectors of distinct eigenvalues are always independent. Hence, we can find∑

multgeomA(λi) independent eigenvectors for A. But by assumption, this means that A has
n independent eigenvectors. Since n indepenedent vectors in Rn always are a basis of Rn, this
means that A has an eigenbasis. Hence A is diagonalizable (Thm.5.7).

Ex 11.9 (Multiple choice and True/False questions)

a) i) Let A be a 3× 3 matrix that has the eigenvalues −1, 1 and 2. Then

I) The rank of A is equal to

(A) 1 (B) 2 (C) 0 (D) 3

II) The determinant of ATA is equal to

(A) 2 (B) 4 (C) 0 (D) 3

III) The determinant of A+ I is equal to

(A) 1 (B) 6 (C) 0 (D) − 1

IV) The determinant of A−1 is equal to

(A) − 2 (B) − 1 (C) 1 (D) − 1/2

ii) Consider the matrices

A =

2 0 8
1 4 −4
1 2 −3

 and B =

1 −3 3
3 −5 3
3 −3 1

 .

Then the following matrices are diagonalizable:

(A) both A and B (B) only B (C) only A (D) neither A nor B.

iii) Let T : R3 → R3 be the linear transformation defined by

T

x1

x2

x3

 =

6x1 + 2x2 + 4x3

− 3x2 + x3

2x1 + 8x2 − x3

 .

Let E and F be two bases of R3 given by



E =


1
0
0

 ,

0
1
0

 ,

0
0
1

 and F =


2
0
0

 ,

 0
1
−1

 ,

 0
−1
2

 .

Then the matrix of T in the bases E (outgoing) and F (incoming) is

(A)

3 2 2
1 2 5
2 1 0

 (B)

3 1 1
2 3 1
2 5 0

 (C)

3 1 2
2 2 1
2 5 0

 (D)

3 1 2
2 0 1
1 2 0

 .

b) In the following, let A be an n × n matrix. Decide whether the following statements are
always true or if they can be false.

i) If v1 and v2 are linearly independent eigenvectors of A, then they correspond to distinct
eigenvalues.

ii) If A is invertible, then it is diagonalizable.

iii) If A is not invertible, then it is not diagonalizable.

iv) If A has fewer than n distinct eigenvalues, then A is not diagonalizable.

v) If AP = PD for some diagonal matrix D, then all columns of P are eigenvectors of A.

vi) If AP = PD for some diagonal matrix D, then A is diagonalizable.

vii) A has diagonalizable if A has n eigenvectors.

viii) If AP = PD, with D diagonal, then the nonzero columns of P must be eigenvectors of
A.

Solution:

a) i) The key to the answers is to note that A is diagonalizable and A = PDP−1. Thus
det(A) = det(D) = −2.

I) The answer is (D). Indeed, A is invertible.

II) The answer is (B). Indeed, det(ATA) = det(A)2.

III) The answer is (C). We know that −1 is an eigenvalue, so A + I cannot be
invertible.

IV) The answer is (D). Indeed, det(A−1) = 1/ det(A).

ii) The answer is (A).

iii) The answer is (C).

b) i) False: We have seen two-dimensional eigenspaces, which contain two linearly indepen-
dent eigenvectors that correspond to the same eigenvalue.

ii) False:

(
1 1
0 1

)
is invertible, but not diagonalizable.

iii) False:

(
1 0
0 0

)
is not invertible, but diagonalizable (because it is already diagonal).

iv) False: If n > 1, the identity matrix In has fewer than n distinct eigenvalues (namely
one), but it is diagonalizable.



v) False: The equality holds for all choices of A and D when P is the zero matrix. But
the columns of this P can never be eigenvectors by definition. (because they are all
zero vectors).

vi) False: If we choose P = 0 again, the equality holds for an arbitrary diagonal matrix D
and an arbitrary non-diagonalizable matrix A.

vii) False: To conclude that A is diagonalizable, the n eigenvectors must also be linearly
independent.

viii) True. Indeed, let vj ∈ Rn be the jth column of P and assume vj ̸= 0. Then Avj =
APej = PDej = Pdjjej = djjPej = djjvj, where djj is the jth diagonal entry of D.
Since vj ̸= 0, it is an eigenvector of A.


