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SOLUTIONS for Homework 10

Ex 10.1 (Calculus with complex numbers)
1 2+ 31

1+47 244

b) Calculate the modulus of the following complex numbers:

a) Find the real and imaginary part of z =

Z1 = i, 29 = 2 — 2@, 23 = —44.

c¢) Given z € C we define w € C by

where ¢ = +1 is the sign of Im(z) (convention: the sign of zero equals 1). Show that w? = z,
i.e., w is a square-root of z. Use this result to find a square-root of i.

Solution:

) 2431 1—1 (2+3i)(2—4) 1—d T+4i
a —_ = — = —
1+4 244 (1491 —-19) (2+9)((2—1) 2 5
1 1. 7 4. 9 13
= =] —"—-"— -7 = ——— — —

2 2 5 5 10 10
Hence Re(z) = —+F and Im(z) = — 3.

b) We have |2| = V1 =1, |z| = /22 + (=2)2 = V8 and |z3| = 1/(—4)2 = 4.

c) Using the formula for the complex product the real part of w? is given by

Re(w?) = ( @) _ ( |2 2Re<z>>2
:(M+§dd)_(M—§q@)

= Re(2),

where we used that €2 = 1. The imaginary part of w? is given by

Im(w?) = 2¢ - ( M) . < W)
2 2
— 2. \/(’Z‘ +2Re(z)> ‘ <|Z] —2Re(z))

2 2
oo I = Re(2)
4

=¢-|Im(z)| = Im(2)




since 1/|z|> — Re(z)” = 1/Im(2)”> = |[Im(z)| and ¢ = sgn(Im(z)). Note that in the above
calculation all roots involved non-negative arguments since |z| > |Re(z)].

By definition we have |i| = 1, Re(i) = 0 and Im(i) = 1, so that /i = \/g+ \/gz

Ex 10.2 (The matrix of a linear map relative to two bases)
Let T : R? — R3? be the linear transformation defined by

- 4x1 4 329
T(( 1)) = | 10z, — 85

2 1+ 279
1 0 —1 —1 2
Consider the bases B = {(1) : (1)} of R? and C = 0], 21].,10 of R3. Give
0 0 1
the matrix M = [T] that represents T' going from B to C; in other words, the matrix M such

that [T(v)]e = M - [v]s.

Solution:
We first calculate the images of the basis vectors in B under 7', finding that

n(p=(5) -2

Next we need to find the C-coordinates of these vectors by solving two linear systems. As seen
in the course, this can be done simultaneously by considering the augmented matrix

-1 -1 2|7 3 1 0 0|—-2 5
0O 2 0|2 8] — | 0101 -4
0O 0 1/3 2 001 3 2
Therefore
-2 5
M = 1 -4
3 2

Ex 10.3 (Finding a basis for an eigenspace)
Find a basis for the eigenspace of the eigenvalue A = 3 of the matrix

4 3
B=|-11 -3
2 4 9

Solution:
We have to find a basis for ker(B — 37), so we row reduce this matrix:

4-3 2 3 1 2 3 1 2 3
-1 1-3 -3 |=|-1 -2 -3] — |0 0 O
2 4  9-3 2 4 6 000



—2s — 3t —2 -3

= s
t 0 1

SIS
I

This is the parametric vector form of the elements lying in the kernel, so we know that
—2 -3
11,10 is a basis.
0 1

Ex 10.4 (Some eigenvalues and eigenvectors)

Consider the matrices
31 5 4
C_<1 3)’ D_(—l 1>'

Find the eigenvalues of both, and give an eigenvector for each eigenvalue.

Solution:
We first calculate the characteristic polynomial

det(A — C) = det (A__lg A__13> =A=3)(A=3)—(=1)- (1)
=N —6A+8=(\—2)(A—4),

so A1 = 2 and Ay = 4 are eigenvalues of C'. If you don’t see the factorization of the last step,

the roots of the characteristic polynomial can also be found with the well-known a-b-c¢ formula
—btvb%2—4ac
2a '

Then we row reduce B — 21 and B — 41 to get eigenvectors:
3—2 1 (11 11 N (1
1 3-2) {11 00 VTl
3—4 1 (-1 1 R -1 1 N (1
1 3-4)"\1 1 0 0 V2= A1)

Then we do the same for D:

A—5 —4

det()\I—D):det( 1 N1

) =A=5)A=1)—(=4)-1=X=6A+9=(\—3)
so A = 3 is the only eigenvalue. Then:

(20 5) -G 5~ (G A = 6d) == ()

Ex 10.5 (More eigenvalues and eigenvectors)
Find the eigenvalues of

-1
E=1|-3
0

S = O
O =

n the course the characteristic polynomial was defined as x4(A\) = det(A\ — A). We always have det(A —
Al) = (—1)™det(AI — A), so these two polynomials have the same roots. For computations it might be faster
to take A — AI to avoid the sign change for all entries of A, but for theoretical arguments the other formula is
more useful as the leading coefficient is always equal to 1. To find eigenvalues, you can choose the formula you
prefer.



and give an eigenvector for each.

Solution:
We first compute the characteristic polynomial:

A+1 0 —1

detM —E)=| 3 A—-4 0 :(HA)'A—ZL 0 ‘_1_'3 )\_4‘

C L, 0 A-—2 0 0
1-(-1) o0 1 0 01 350
E—MI= 3 4—(-1) 0 =350 — [0 01
0 0 2—(-1) 0 0 3 0 0 0
x gt g 5
= Yy = t =1 1 = Vi = 3 )
z 0 0 0
-1—-4 0 1 -5 0 1 1 00
E— X1 = -3 4-4 0 =1-3 0 0 — | -5 0 1
0 0 2-4 0 0 =2 0 01
1 00 100 0
— 10 0 1] — |0 0 1 = vo=1[1];
0 01 000 0
-1-2 0 1 -3 01 -3 0 1
E—X\sI = -3 4-2 0 =(-3 20| — 0 2 -1
0 0 2-2 0 0 O 0 0 0
x %t % 2
—— Yy = 575 =1 % = V3 = 3
z t 1 6

(in the first and last case one can also take the vector with fractional entries; we just multiplied
it by 3 respectively 6 to have integer coordinates)

Ex 10.6 (Eigenvalues of AB and BA)
Let A and B be two n x n matrices. Show that AB and BA have the same eigenvalues.
Hint: Distinguish the cases A =0 and A # 0.

Solution:

First, let’s notice that it is enough to show one direction only, for instance the statement “if
A is an eigenvalue of AB, then ) is also an eigenvalue of BA”. Indeed, if this implication is
proved, the inverse one is also proved by symmetry (calling B = A and A = B). We consider
two different cases.

1. A=0.
A = 0 is an eigenvalue of AB if and only if det(AB) = 0 = det(A) det(B). This implies
that either detA = 0 or detB = 0. But then we also have det(BA) = 0, and this can be
true if and only if A = 0 is an eigenvalue of BA.

2. M #£0.
If A # 0 is an eigenvalue of AB, then

there is a v # 0 such that ABv = Av # 0. (1)



Consider w = Bv. Then w # 0 because v # 0 and v ¢ ker(B) by hypothesis (if
v € ker(B) then ABv = 0 which is in contradiction with the hypothesis that v is an
eigenvector associated with an eigenvalue A # 0). But then

BAw = B(ABv) = B(Av) = ABv = \w (2)

thus A is an eigenvalue of BA, too.

Ex 10.7 (Some statements about eigenvalues and eigenvectors)

1. Show that if A is an eigenvalue of an invertible matrix A then A~! is an eigenvalue of A1,
Hint: use a non zero vector x satisfying Ax = Ax.

2. Show that A and AT have same eigenvalues.
Hint: Find a relation between det(A — AI) and det(A” — \I).

3. Let A be an n x n matrix such that the sum of each row’s elements is equal to the same
number 7.

(i) Show that r is an eigenvalue of A.
Hint: find an eigenvector.

(ii) [This is a harder and therefore not exam-relevant but still fun problem:]

Show that if all the elements in A are in addition positive then the absolute value of any
other eigenvalue is less than r.

Hint: You will need to use the triangle inequality.

4. Let A be an n X n matrix such that the sum of each column’s elements is equal to the
same number c. Show that ¢ is an eigenvalue of A.
Hint: Use the results from the previous parts.

Solution:

1. If X\ is an eigenvalue of A, then there is a non-zero vector x such that Ax = Ax. By
successive steps we deduce from this

AX=Xx =— A 'Ax=A"")\x — x=M"'x — A 'x= %x.

Which means that i is an eigenvalue of A~L.

2. As det(A — M) = det(A — M) and I = I, we have det(A — \I) = det(4A — A\I)T =
det(AT — AI). Thus the characteristic polynomials of A and A are the same and those
two matrices have the same eigenvalues.

(i) Let v be a R™ vector in which all the components are equal to 1. Then we have
Av = rv and thus r is an eigenvalue of A.
(i

i) Let A be an eigenvalue of A; then there is a non-zero vector v such that Av = Av:

a11v1 + AUy + - -+ AU, = Avg
A91V1 + Qo2Vo + - -+ + A9pV, = )\Ug

Ap1V1 + QpaVs + -+ + AppUy, = AU,



Consider M, 1 < M < n, such that |vy| = max(|v;]), i.e., the entry of v with the biggest
modulus. Sinve v # 0, we know that vy; # 0 and therefore the M*'™ line of the above
system can be written as:

U1 V2 Un
)\IGM1—+GM2—+“'+CLM”—
Um Um Um
As || <1 for every ¢ and as ayy; > 0, Vi, we have :
U1 V2 Un,
I\l = |asn— + app—— + -+ + apn—
Um Um Um
U1 U2 Un
<am|—|+ame|—|+ -+ aun|—
Um Um Um

< ami +apz+ -+ ap, =T

4. In the matrix A" the sum of the elements of each rows is equal to the same number c.
By the preceding point ¢ is an eigenvalue of AT and by the second point of this exercise
¢ is an eigenvalue of A.

Ex 10.8 (Even more eigenvalues and eigenvectors)

Consider the matrices

0 —4 -6
A:[_i ﬂ and B=|-1 0 -3
1 2 5

For each of the matrices A and B: find its characteristic polynomial, its eigenvalues as well as
their eigenvectors.

Hint: The characteristic polynomial of B is of degree 3 with no simple structure. To guess a root,
you can use the rational root theorem: for a polynomial with rational coefficients ag...,a, € Q
any rational root (if it exists) has to be of the form a/b, where a divides the constant coefficient ag
and b divides the leading coefficient a,,.

Solution:
The eigenvalues of A are the roots of its characteristic polynomial

P(\) = det(A] — A) = X\ — 6\ + 8.

Thus we obtain the two roots Ay = 2 and Ay = 4. Since A is a 2 x 2 matrix and has 2 distinct
eigenvalues, its eigenspaces are 1-dimensional (since eigenvectors corresponding to different
eigenvalues are linearly independent).

The eigenvectors corresponding to A = 2 satisfy Avy; = 2v; and are of the form

1
K |:_1:| ,ILLGR.

The eigenvectors corresponding to A = 4 satisfy Avy = 4vs and are of the form

- {31},/161&



As for B, its characteristic polynomial is

A4 6
detO\M —B)=|1 X 3 :/\-‘
~1 -2 -5

=X (A2 =5A+6) — (4\ —8) — (—6A +12) = A\ — 5\ + 8\ — 4.

A3 41 6 16
9 )\—5‘_1"—2 A—5'+(_1)"A 3‘

Using the rational root theorem, we look for a rational root that then has to be of the form
a/b, where a divides (—4) and b has to divide 1 (which implies that b = £1). Thus we have the
possibilities —4, —2, —1,1,2,4. A quick test shows that 1 is a zero, so we can factor

N BN 48N —4 = (A—1)(a\* + b\ +¢)

and a comparison of the coefficients yields that a = 1, b = —4 and ¢ = 4. The remaining
polynomial factors as
N AN+ 4=(N—-2)
so that it total
det(A\] — B) = (A — 1)(A — 2)°.

Hence the eigenvalues of B are A\ = 1 and A\ = 2.
Solving the equation system Bv; = 1 - vy, we find that the eigenvectors associated to the
eigenvalue 1 are the vectors of the form

-2
pwe {=1],peR.
1
Solving the equation system Bvy = 2 - vy, we find that the eigenvectors associated to the
eigenvalue 2 are the vectors of the form
-3 -2
w0+ 1| ,urkelR.
-1 0

Ex 10.9 (Who comes up with these titles?)
Let A and B be the following matrices

1
A= |0
1 0 1

S = O

1
1 and B:{l 1].
0

For each matrix find out the characteristic polynomials, eigenvalues and the corresponding
eigenvectors in R.

Solution:
The characteristic polynomial of A is

Ya(\) = det(\ — A) = (A — 1)[A2 — A — 1],

which can be obtained by Laplace expansion along the first column. Thus the three roots are
M =12 = (14++5)/2,X3 = (1 —+/5)/2. Since A is a 3 x 3 matrix and there are 3 distinct
eigenvalues, each eigenspace is 1-dimensional. Eigenvectors corresponding to A; are of the form

0
we |1, peR.
0



Eigenvectors corresponding to Ay are of the form

-2
e —2 € R
[1 =5

Eigenvectors corresponding to A3 are of the form

-2
I -2 € R.
1+ V5]

The characteristic polynomial of B is
xB(\) = det(A — B) = (A — 1)?,

with the root A =1, A € R. Then B has only one eigenvalue of algebraic multiplicity equal to
2. Eigenvectors corresponding to A are of the form

1
. R
o[l nem
i.e., the eigenspace is 1-dimensional, meaning that the geometric multiplicity is 1.

Ex 10.10 (Rotation matrices 2 x 2)

Let a be an angle in [0, 27) and define the matrix R, by:
R, — (C'OS o —sin a)
sina cosa

(a) Verify computationally that the linear map f : R? — R? induced by R, (i.e. f(v) = Rav
for all v € R?) is the counter-clockwise rotation around the origin by angle a.

Hint: Write v = (C.Osa
sin 6

compute R,v and simplify using angle sum theorems of trigonometric functions. Then explain

> for some angel 6 € [0, 27) (i.e. express v in polar coordinates), then

(e.g. in words and a drawing) why your computations show that f is the desired rotation.
(b) Compute all eigenvalues of R,.

(c) For each eigenvalue, find at least one eigenvector of R,. (For the case of non-real eigen-
values, this is not exam-relevant and hence not a mandatory exercise.)

Solution: a) Recall the double angle formulae:

cos(a+ ) = cosacos f — sin asin f3,

sin(a + ) = cos asin 5 + sin «v cos f5.
Thus, we have
cosa —sina) (cosf cos acos ) — sin asin 6 cos(a + 6)
Rov=1| . . = : : =1 . .
sina  cosa sin ¢ —sinacos ) + cos asin sin(a + 0)
Hence, as v is the unit vector in R? with angle 6 with respect to the z-axis in the counter-

clockwise direction, applying R, corresponds to rotating v by a further o angle in the counter-
clockwise direction.



b) The characteristic polynomial of R, is

A\ — Ccos « sin o
Xr,(A) = det(A — R,) = det ( Csina )\ — cos a)

= (A —cosa)® +sin’a

= A2 — 2cosa\ + cos? a + sin? «

=\ —2cosa\+1

where we used the fact that cos? a +sin” @ = 1. Thus, by the quadratic formula, yx, has roots
1
5(200504 +2veos?a— 1) =cosa+ /—(1 —cos?a) = cosa +isina

which are the eigenvalues of R,.

c) Firstly, we observe that for a = krmr, R, = (—1)*I with the eigenvalue (—1)*. In this case, it
is clear that ey, e are suitable eigenvectors.
Now, for o # km, we want to find vectors v € R? such that

R,v = (cos a + i sin a)w.
Namely,

0= Ryv — (cosa £ isina)v

_ [cosa —sina v\  [cosa +isino 0 U1
~ \sina cosa Uy 0 cosa +1sin o Vg
_ <$z.smoz —431'1104) (vl) _isina (:Fl 1 ) <v1> '

sina¢  Frsina Uy -1 F1 Vg

Hence, by dividing both sides by i sin « (recall that we assumed o # km so sina # 0), it suffices
to find solutions to the following homogeneous system of equations

(5 ) () =0
s={(n) v e}

Thus, taking v; = 1, the eigenvalue cos a + i sin & has corresponding eigenvector
1
i)

Ex 10.11 (Multiple choice and True/False questions)

This has solution space

a) (i) Let the matrix

—4 2 =2
A= 4 -6 «
5 B 7

with the parameters a € R et 5 € R.

So, for all @ € R, the number —2 is an eigenvalue of the matrix A if

(4) B=4 (B) B=—5 (C) B=-3 (D) B=-2



(ii) Let the matrix

A=

=™ ot o
—_ 2 =
o UGV

with the parameters « € R et 5 € R.

So, for all a € R, the number 1 is an eigenvalue of the matrix A if
(4 p=-3 (B) p=5/3 (C) p=-2 (D) p=3

b) Decide whether the following statements are always true or if they can be false.

(i) If vy and vy are linearly independent eigenvectors of a matrix A, then they correspond
to different eigenvalues.

(ii) The sum of two eigenvectors of a matrix is again an eigenvector.
(iii) If A is invertible and v is an eigenvector of A, then v is also an eigenvector of A~

)
)

(iv) The eigenvalues of a matrix are the diagonal elements.

(v) Elementary row operations do not change the eigenvalues of a matrix.
)

(vi) A square matrix is invertible if and only if 0 is not an eigenvalue of A.

Solution:
a) (i) (B): To see this, insert consider the matrix —2I3 — A and compute its determinant which
is 2(—a+4)(B 4+ 5). This is zero for all « if and only if § = —5.

(i) (D): In this case the determinant of I3 — A is (=8 + 3)(2 + 3 — 3a).
b)

(i) FALSE: Consider the matrix A = I,,, for which all vectors are eigenvectors with eigen-
value 1.

(i) FALSE: Consider the matrix A = <() 5

L 1), which has the eigenvectors v; = (é) and

-1 , .
vy = (_1), but vy + vy = (_01> is not an eigenvector.

(ii) TRUE: If A is invertible and v is an eigenvector with eigenvalue A, then A # 0 (otherwise
ker(A) contains a non-zero vector) and Av = Av. Multiplying this equation by A~! yields
v = M7, so dividing by X yields that v is an eigenvector of A~! with eigenvalue A\~!.

(iv) FALSE: Consider the matrix A = G D, which is not invertible and thus has the
eigenvalue 0, which is not a diagonal element. The other eigenvalue is 2 (with eigenvector
(1)), which is also not on the diagonal. However, the statement is true for triangular

matrices.

(v) FALSE: We know that any invertible matrix can be transformed by elementary row
operations into the identity matrix. However, the identity matrix only has the eigenvalue

1, which is not true for instance for the invertible matrix A = (3 g)

(vi) TRUE: This was shown in the course.



