

MATH-111(en)

Linear Algebra

Fall 2024 Annina Iseli

MINI SOLUTIONS for Homework 3

Ex 3.4 (The weekly linear system : matrix equations and linear (in)dependence)

For each of the matrix equations: (i) solve the equation. (ii) From the solution to the equation, deduce whether the columns of the coefficient matrices are linearly independent or linearly dependent.

(a)
$$\begin{pmatrix} 2 & -5 & 8 \\ -2 & -7 & 1 \\ 4 & 2 & 7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
, (b) $\begin{pmatrix} 1 & -3 & 7 \\ -2 & 1 & -4 \\ 1 & 2 & 9 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

Solution:

- a) $x_2 = 3/4x_3$ and $x_1 = -17/8x_3$.
- b) $x_1 = x_2 = x_3 = 0$.

Ex 3.5 (Linear (in)dependence depending on a parameter)

For which values of $a \in \mathbb{R}$ are the following vectors linearly dependent?

$$\begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}, \quad \begin{pmatrix} -2 \\ -6 \\ 3 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ a \\ 2 \end{pmatrix}$$

Solution:

For a = 3 the vectors are linearly dependent.

Ex 3.6 (Vectors in the image of a linear transformation)

Consider the linear transformation (function) $T: \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 2x_1 - 2x_2 \\ -x_1 \\ x_1 - 2x_2 \end{pmatrix}.$$

- 1. Find $\mathbf{x} \in \mathbb{R}^2$ such that $T(\mathbf{x}) = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$. Are there any more such vectors \mathbf{x} ?
- 2. Is there an $\mathbf{x} \in \mathbb{R}^2$ such that $T(\mathbf{x}) = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$?
- 3. Is there any vector **b** such that $T(\mathbf{x}) = \mathbf{b}$ has more than one solution?

Solution:

Recall that for linear transformations an equation T(x) = b corresponds to a linear system.

a)
$$\mathbf{x} = \begin{pmatrix} -1 \\ -3/2 \end{pmatrix}$$
.

- b) Omitted.
- c) Omitted.

Ex 3.8 (Representing linear transformations with matrices)

Find the matrices of the transformations T determined by the equations below.

1.
$$T\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} 2z - y \\ 3y - 2x \\ 4x - 3z \end{pmatrix}$$
.

2. $T(x_1, x_2, x_3, x_4) = 3x_1 + 4x_3 - 2x_4$.

$$3. \ T\left(\begin{pmatrix}1\\0\\0\end{pmatrix}\right) = \begin{pmatrix}4\\2\\-1\end{pmatrix}, \quad T\left(\begin{pmatrix}1\\0\\1\end{pmatrix}\right) = \begin{pmatrix}-5\\3\\0\end{pmatrix}, \quad T\left(\begin{pmatrix}1\\2\\1\end{pmatrix}\right) = \begin{pmatrix}-3\\3\\2\end{pmatrix}.$$

Hint: Express the vectors e_1, e_2, e_3 as linear combination of the vectors for which you know the image and then use linearity to compute what you need.

Solution:

$$1. \begin{pmatrix} 0 & -1 & 2 \\ -2 & 3 & 0 \\ 4 & 0 & -3 \end{pmatrix}$$

2.
$$(3 \ 0 \ 4 \ -2)$$

$$3. \begin{pmatrix} 4 & 1 & -9 \\ 2 & 0 & 1 \\ -1 & 1 & 1 \end{pmatrix}.$$