

MATH-111(en)

Linear Algebra

Fall 2024 Annina Iseli

Homework 8

Ex 8.1 (A family of bases)

Find all $b \in \mathbb{R}$ such that the vectors

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 1 \\ b \\ 0 \end{pmatrix}$$

form a basis of \mathbb{R}^3 .

Ex 8.2 (Basis or not?)

Determine if

$$\{1+t^2, 1-t, 2-4t+t^2, 6-18t+9t^2-t^3\}$$

is a basis for \mathbb{P}_3 .

Ex 8.3 (Bases of column space and kernel)

Let

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 2 \\ 2 & 2 & 2 & 2 \end{pmatrix}.$$

- (a) Find a basis for the column space of A.
- (b) Find a basis for the kernel of A.
- (c) What are the respective dimensions of the range and kernel of A?

Ex 8.4 (Kernel and range)

(a) Let $T: \mathbb{P}_3 \to \mathbb{P}$ be the linear transformation defined by

$$T(p) = p'$$

Find Ker(T) and Ran(T), as well as bases for each of them.

(b) Let $T: \mathbb{P}_2 \to \mathbb{R}^2$ be the linear transformation defined by

$$T(p(t)) = \begin{pmatrix} p(0) \\ p'(0) \end{pmatrix},$$

where p' is the derivative of p. Find bases for Ker(T) and Ran(T).

Ex 8.5 (A basis calculation)

Find a basis for the space spanned by the following vectors:

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \quad v_3 = \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix}, \quad v_4 = \begin{pmatrix} 2 \\ 1 \\ -6 \end{pmatrix}.$$

Ex 8.6 (Getting acquainted with kernel and column space)

Let A be an $m \times n$ matrix, B an $n \times k$ matrix such that $Ker(A) \cap Col(B) = \{0\}$, and $\mathcal{B} = \{b_1, \dots, b_k\}$ a basis of Col(B).

Show that $C = \{Ab_1, \dots, Ab_k\}$ is a basis of Col(AB).

Ex 8.7 (Representing a vector in a different basis)

Let $\mathcal{B} = \{b_1, b_2, b_3\}$ be the basis of \mathbb{R}^3 with

$$b_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, b_2 = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}, b_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

For the vector $u = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, determine $[u]_{\mathcal{B}}$.

Moreover, find the vector w such that $[w]_{\mathcal{B}} = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}$.

Ex 8.8 (More coordinate calculations)

We define:

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix}, \begin{pmatrix} 5 \\ 2 \\ -2 \end{pmatrix}, \begin{pmatrix} 4 \\ -7 \\ 0 \end{pmatrix} \right\} \quad \text{and} \quad [x]_{\mathcal{B}} = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}. \quad \text{and} \quad y = \begin{pmatrix} 10 \\ -9 \\ 1 \end{pmatrix}$$

Find the vector x (i.e. its coordinates in the standard basis) and find $[y]_{\mathcal{B}}$.

Ex 8.9 (New coordinates for polynomials)

Determine $[t]_{\mathcal{B}}$ and $[1+t^2]_{\mathcal{B}}$ for the basis $\mathcal{B} = \{p_1, p_2, p_3\}$ of \mathbb{P}_2 where

$$p_1(t) = 1 + t + t^2$$
, $p_2(t) = 2t - t^2$, $p_3(t) = 2 + t - t^2$.

(<u>Hint:</u> Write the \mathcal{B} -coordinates of p_1 , p_2 and p_3 and the polynomials t and $1 + t^2$ for the basis $\mathcal{B} = \{1, t, t^2\}$ and then solve the corresponding linear systems.)

Ex 8.10 (More polynomial calculations)

- (a) Show that the set $F = \{1 + t^2, t + t^2, 1 + 2t + t^2\}$ is a basis for \mathbb{P}_2 .
- (b) Find the coordinates vector of $f(t) = 1 + 4t + 7t^2$ in the basis F.

Ex 8.11 (Dimension of the kernel) Let $A \in \mathbb{R}^{n \times n}$ and assume that the dimension of $\operatorname{Ker}(A) = 1$. Can dim $\operatorname{Ker}(A^2)$ be equal to 0? Can it be equal to 1 or 2? Can it be larger than 2?

<u>Tipp</u>: Start by trying to come up with a few simple examples of matrices A for which $\dim \operatorname{Ker}(A) = 1$ and check what $\dim \operatorname{Ker}(A^2)$ is.

(<u>Be aware</u>: the last question is more tricky than the others and is <u>not</u> a potential exam problem.)

Ex 8.12 (True/False questions)

Decide whether the following statements are always true or if they can be false.

- (i) If $V = \operatorname{Span}(v_1, \dots, v_k)$, then $\{v_1, \dots, v_k\}$ is a basis of V.
- (ii) A spanning set of maximal size is a basis.
- (iii) Suppose the matrix B is an echelon form of the matrix A. Then the pivot columns of B form a basis for Col(A).
- (iv) The columns of an invertible $n \times n$ matrix form a basis for \mathbb{R}^n .
- (v) A linearly independent set in a subspace H is a basis for H.
- (vi) If V is a vector space and \mathcal{B} a basis with n elements, then $[x]_{\mathcal{B}}$ is a vector in \mathbb{R}^n .
- (vii) If V is a vector space with a finite basis \mathcal{B} and $P_{\mathcal{B}}$ is the change-of-coordinates matrix from \mathcal{B} to the standard basis, then $[x]_{\mathcal{B}} = P_{\mathcal{B}} x$ for all $x \in V$.